You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Based on his own work, the author synthesizes the most promising approaches and ideals in field theory today. He presents such subjects as statistical mechanics, quantum field theory and their interrelation, continuous global symmetry, non-Abelian gauge fields, instantons and the quantam theory of loops, and quantum strings and random surfaces. This book is aimed at postgraduate students studying field theory and statistical mechanics, and for research workers in continuous global theory.
The first edition of this necessary reading for cosmologists and particle astrophysicists was quickly adopted by universities and other institutions of higher learning around the world. And with the data and references updated throughout, this third edition continues to be an ideal reference on the subject. The tried-and-tested logical structuring of the material on gauge invariance, quantization, and renormalization has been retained, while the chapters on electroweak interactions and model building have been revised. Completely new is the chapter on conformality. As in the past, Frampton emphasizes formalism rather than experiments and provides sufficient detail for readers wishing to do their own calculations or pursue theoretical physics research.
Introduction to Gauge Field Theory provides comprehensive coverage of modern relativistic quantum field theory, emphasizing the details of actual calculations rather than the phenomenology of the applications. Forming a foundation in the subject, the book assumes knowledge of relativistic quantum mechanics, but not of quantum field theory. The book is ideal for graduate students, advanced undergraduates, and researchers in the field of particle physics.
Gauge Field Theories: An Introduction covers the basic notions and principles of gauge theories. This book is composed of 10 chapters that focus on the Salam-Weinberg model of electro-weak interactions of neutrino-lepton scattering, as well as the Parton model. The first chapter is an introduction to solitons and instantons, as well as the topological quantum numbers, subjects that arose from the study of the non-linear field equations in gauge theories. The succeeding chapters deal with the concept of gravitational field, electrodynamical systems, the Yang-mills gauge fields, and the Higgs mechanism. The remaining chapters highlight the speculations on possible lepton and quark structured. These chapters present the SU(5) model of grand unification. This book will prove useful to physics university and advanced high school students.
This is an introduction to the basic tools of mathematics needed to understand the relation between knot theory and quantum gravity. The book begins with a rapid course on manifolds and differential forms, emphasizing how these provide a proper language for formulating Maxwell's equations on arbitrary spacetimes. The authors then introduce vector bundles, connections and curvature in order to generalize Maxwell theory to the Yang-Mills equations. The relation of gauge theory to the newly discovered knot invariants such as the Jones polynomial is sketched. Riemannian geometry is then introduced in order to describe Einstein's equations of general relativity and show how an attempt to quantize gravity leads to interesting applications of knot theory.
In recent years, gauge fields have attracted much attention in elementary par ticle physics. The reason is that great progress has been achieved in solving a number of important problems of field theory and elementary particle physics by means of the quantum theory of gauge fields. This refers, in particular, to constructing unified gauge models and theory of strong interactions between the elementary particles. This book expounds the fundamentals of the quantum theory of gauge fields and its application for constructing unified gauge models and the theory of strong interactions. In writing the book, the authors' aim was three-fold: firstly, to outline the basic ideas underlying the unified ...
What makes the world tick? -- Electromagnetism -- The vacuum is the medium -- Let there be light -- Heroic age: the struggle for quantum theory -- Quantum reality -- What is charge? -- The zen of rotation -- Yang-Mills field: non-commuting charges -- Photons real and virtual -- Creation and annihilation -- The dynamical vacuum -- Elementary particles -- The fall of parity -- The particle explosion -- Quarks -- All interactions are local -- Broken symmetry -- Quark confinement -- Hanging threads of silk -- The world in a grain of sand -- In the space of all possible theories -- Epilogue: beauty is truth.
This is the second volume of the third edition of a successful text, now substantially enlarged and updated to reflect developments over the last decade in the curricula of university courses and in particle physics research. Volume I covered relativistic quantum mechanics, electromagnetism as a gauge theory, and introductory quantum field theory, and ended with the formulation and application of quantum electrodynamics (QED), including renormalization. Building on these foundations, this second volume provides a complete, accessible, and self-contained introduction to the remaining two gauge theories of the standard model of particle physics: quantum chromodynamics (QCD) and the electroweak...
First Published in 2018. Routledge is an imprint of Taylor & Francis, an Informa company.