You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book covers scientific, clinical, and educational aspects of radiotheranostics in cancer control. Setting the framework, the first volume defines radiotheranostics and describes the history of radionuclide therapy and theranostics, and the biology of cancer. It examines the clinical applications of unconjugated radionuclides, such as 131I and 223Ra, and of radionuclide-conjugated cancer-specific vectors: peptides, small molecules, antibodies, and nanoparticles; introduces clinical trials and drug development; and reviews epidemiological studies and the adverse effects of radionuclide therapy – both radiation injuries and chemical toxicity. It presents the chemistry and physics of radi...
This book explores the current difficulties and unsolved problems in the field of particle therapy and, after analysing them, discusses how (and if) innovative Monte Carlo approaches can be used to solve them. Each book chapter is dedicated to a different sub-discipline, including multi-ion treatments, flash-radiotherapy, laser-accelerated beams, nanoparticles effects, binary reactions to enhance radiobiology, and space-related issues. This is the first book able to provide a comprehensive insight into this exciting field and the growing use of Monte Carlo in medical physics. It will be of interest to graduate students in medicine and medical physics, in addition to researchers and clinical staff. Key Features: Explores the exciting and interdisciplinary topic of Monte Carlo in particle therapy and medicine Addresses common challenges in the field Edited by an authority on the subject, with chapter contributions from specialists
This book provides a clinical insight into image-guided radiation therapy (IGRT) for prostate cancer. It starts by setting the clinical scene, discussing immobilisation and standard IGRT practice and then considering important developments like IGRT with non-ionising radiation, adaptive radiotherapy, particle therapy, margins, hypofractionation, clinical outcomes, AI and training. Good IGRT requires both technical and clinical focus. So, in complement to our first study guide on IGRT, this book now brings together key, clinical insights into IGRT for Prostate Cancer patients, with a view to helping the professional learn more about ‘how-to’ undertake IGRT for these patients more accurate...
Essentials of Functional MRI is explained from the basic theory underlying magnetic resonance imaging. This includes how it can be used to detect dynamic variations in neural activity to become “functional” MRI, and how fMRI can be used for a variety of applications. The reader will gain an understanding of how fMRI is currently used, its limitations, and how it is still developing. This is achieved by explaining the core concepts and building on them to explain how fMRI data are acquired and what physiological information they provide. These ideas are the key to understanding how the data are analyzed to detect physiological changes that are related to neural activity. With an understan...
Imaging modalities in radiology produce ever-increasing amounts of data which need to be displayed, optimized, analyzed and archived: a "big data" as well as an "image processing" problem. Computer programming skills are rarely emphasized during the education and training of medical physicists, meaning that many individuals enter the workplace without the ability to efficiently solve many real-world clinical problems. This book provides a foundation for the teaching and learning of programming for medical physicists and other professions in the field of Radiology and offers valuable content for novices and more experienced readers alike. It focuses on providing readers with practical skills ...
X-ray computed tomography (CT) has been one of the most popular diagnostic imaging modalities for decades in the clinic for saving patients’ lives or improving their quality of life. This book is an introductory one-stop shop for technological and clinical topics in multi-detector computed tomography (MDCT). Starting with MDCT’s fundamentals in physics and mathematics, the book provides an in-depth introduction to its system architecture and imaging chain, signal detection via energy-integration and photon-counting mechanisms, clinical application-driven scan modes and protocols, analytic and iterative image reconstruction solutions, and spectral imaging – the latest technological adva...
The third in a three-volume set exploring Problems and Solutions in Medical Physics, this volume explores common questions and their solutions in Radiotherapy. This invaluable study guide should be used in conjunction with other key textbooks in the field to provide additional learning opportunities. One hundred and forty-four solved problems are provided in ten chapters on basic physics topics, including: External Beam Therapy Equipment, Photon Beam Physics, Radiation dosimetry, Treatment Planning for External Beam Radiotherapy, and External Beam Commissioning and Quality Assurance. Each chapter provides examples, notes, and references for further reading to enhance understanding. Key features: Consolidates concepts and assists in the understanding and applications of theoretical concepts in medical physics Assists lecturers and instructors in setting assignments and tests Suitable as a revision tool for postgraduate students sitting medical physics, oncology, and radiology science examinations
In 2021, over 537 million people worldwide were diagnosed with diabetes, according to the International Diabetes Federation and so the diagnosis, care and treatment of patients with diabetes mellitus have become one of the highest healthcare priorities. Biomedical photonics methods have been found to significantly improve and assist in the diagnosis of various disorders and complications arising from diabetes. These methods have also been widely used in various studies in the field of diabetes, including in the assessment of biochemical characteristics, metabolic processes, and microcirculation that are impaired in this disease. This book provides an introduction to methods of biomedical pho...
Ultrasound has been widely used in diagnostic imaging for a long time. In the past 10 years, image-guided focused ultrasound therapy has seen rapid growth, in biomedical science and engineering, and in clinical medicine. The purpose of this book is to bring internationally renowned authorities and experts in this field together to provide up-to-date and comprehensive reviews of basic physics, biomedical engineering, and clinical applications of focused ultrasound therapy in a widely accessible fashion. Focusing on applications in cancer treatment, this book covers basic principles, practical aspects, and clinical applications of focused ultrasound therapy. It reviews the medical physics and ...
Calculating x-ray tube spectra provides a comprehensive review of the modelling of x-ray tube emissions, with a focus on medical imaging and radiotherapy applications. It begins by covering the relevant background, before discussing modelling approaches, including both analytical formulations and Monte Carlo simulation. Historical context is provided, based on the past century of literature, as well as a summary of recent developments and insights. The book finishes with example applications for spectrum models, including beam quality prediction and the calculation of dosimetric and image-quality metrics. This book will be a valuable resource for postgraduate and advanced undergraduate students studying medical radiation physics, in addition to those in teaching, research, industry and healthcare settings whose work involves x-ray tubes. Key Features: Covers simple modelling approaches as well as full Monte Carlo simulation of x-ray tubes Bremsstrahlung and characteristic contributions to the spectrum are discussed in detail Learning is supported by free open-source software and an online repository of code.