You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This highly unusual book is a serious inquiry into Schrodinger's question, "What is life?", and at the same time a celebration of life itself. It takes the reader on a voyage of discovery through many areas of contemporary physics, from non-equilibrium thermodynamics and quantum optics to liquid crystals and fractals, all necessary for illuminating the problem of life. In the process, the reader is treated to a rare and exquisite view of the organism, gaining novel insights, not only into the physics but also into "the poetry and meaning of being alive". This book is intended for all who love the subject.
The idea of editing the present volume in the Lecture Notes in Physics series arosewhileorganizingthe“ConferenceonIrreversibleQuantumDynamics”that took place at The Abdus Salam International Center for Theoretical Physics, Trieste, Italy, from July 29 to August 2, 2002. The aim of the Conference was to bring together di?erent groups of - searcherswhoseinterestsandpursuitsinvolveirreversibilityandtimeasymmetry in quantum mechanics. The Conference promoted open and in-depth exchanges of di?erent points of view, concerning both the content and character of qu- tum irreversibility and the methodologies used to study it. The following main themes were addressed: • Theoretical Aspects of Qua...
This highly unusual book began as a serious inquiry into Schrödinger's question, “What is life?”, and as a celebration of life itself. It takes the reader on a voyage of discovery through many areas of contemporary physics, from non-equilibrium thermodynamics and quantum optics to liquid crystals and fractals, all necessary for illuminating the problem of life. In the process, the reader is treated to a rare and exquisite view of the organism, gaining novel insights not only into the physics, but also into “the poetry and meaning of being alive.”This much-enlarged third edition includes new findings on the central role of biological water in organizing living processes; it also completes the author's novel theory of the organism and its applications in ecology, physiology and brain science.
The seminar on Stochastic Analysis and Mathematical Physics of the Ca tholic University of Chile, started in Santiago in 1984, has being followed and enlarged since 1995 by a series of international workshops aimed at pro moting a wide-spectrum dialogue between experts on the fields of classical and quantum stochastic analysis, mathematical physics, and physics. This volume collects most of the contributions to the Fourth Interna tional Workshop on Stochastic Analysis and Mathematical Physics (whose Spanish abbreviation is "ANESTOC"; in English, "STAMP"), held in San tiago, Chile, from January 5 to 11, 2000. The workshop style stimulated a vivid exchange of ideas which finally led to a numbe...
None
This book offers a self-contained overview of the entropic approach to quantum dynamical systems. In it, complexity in quantum dynamics is addressed by comparison with the classical ergodic, information, and algorithmic complexity theories.
Introducing graduate students and researchers to mathematical physics, this book discusses two recent developments: the demonstration that causality can be defined on discrete space-times; and Sewell's measurement theory, in which the wave packet is reduced without recourse to the observer's conscious ego, nonlinearities or interaction with the rest of the universe. The definition of causality on a discrete space-time assumes that space-time is made up of geometrical points. Using Sewell's measurement theory, the author concludes that the notion of geometrical points is as meaningful in quantum mechanics as it is in classical mechanics, and that it is impossible to tell whether the differential calculus is a discovery or an invention. Providing a mathematical discourse on the relation between theoretical and experimental physics, the book gives detailed accounts of the mathematically difficult measurement theories of von Neumann and Sewell.
What is genius? Define it. Now think of scientists who embody the concept of genius. Does the name John Bardeen spring to mind? Indeed, have you ever heard of him? Like so much in modern life, immediate name recognition often rests on a cult of personality. We know Einstein, for example, not just for his tremendous contributions to science, but also because he was a character, who loved to mug for the camera. And our continuing fascination with Richard Feynman is not exclusively based on his body of work; it is in large measure tied to his flamboyant nature and offbeat sense of humor. These men, and their outsize personalities, have come to erroneously symbolize the true nature of genius and...
Entropy and entropy generation play essential roles in our understanding of many diverse phenomena ranging from cosmology to biology. Their importance is manifest in areas of immediate practical interest such as the provision of global energy as well as in others of a more fundamental flavour such as the source of order and complexity in nature. They also form the basis of most modern formulations of both equilibrium and nonequilibrium thermodynamics. Today much progress is being made in our understanding of entropy and entropy generation in both fundamental aspects and application to concrete problems. The purpose of this volume is to present some of these recent and important results in a ...