Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Automorphisms ofTwo-Generator Free Groups and Spaces of Isometric Actions on the Hyperbolic Plane
  • Language: en
  • Pages: 92

Automorphisms ofTwo-Generator Free Groups and Spaces of Isometric Actions on the Hyperbolic Plane

The automorphisms of a two-generator free group F acting on the space of orientation-preserving isometric actions of F on hyperbolic 3-space defines a dynamical system. Those actions which preserve a hyperbolic plane but not an orientation on that plane is an invariant subsystem, which reduces to an action of a group on by polynomial automorphisms preserving the cubic polynomial and an area form on the level surfaces .

Sums of Reciprocals of Fractional Parts and Multiplicative Diophantine Approximation
  • Language: en
  • Pages: 92
New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Rn
  • Language: en
  • Pages: 90

New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Rn

All the new tools mentioned above apply to non-orientable minimal surfaces endowed with a fixed choice of a conformal structure. This enables the authors to obtain significant new applications to the global theory of non-orientable minimal surfaces. In particular, they construct proper non-orientable conformal minimal surfaces in Rn with any given conformal structure, complete non-orientable minimal surfaces in Rn with arbitrary conformal type whose generalized Gauss map is nondegenerate and omits n hyperplanes of CPn−1 in general position, complete non-orientable minimal surfaces bounded by Jordan curves, and complete proper non-orientable minimal surfaces normalized by bordered surfaces in p-convex domains of Rn.

On the Stability of Type I Blow Up for the Energy Super Critical Heat Equation
  • Language: en
  • Pages: 110

On the Stability of Type I Blow Up for the Energy Super Critical Heat Equation

The authors consider the energy super critical semilinear heat equation The authors first revisit the construction of radially symmetric self similar solutions performed through an ode approach and propose a bifurcation type argument which allows for a sharp control of the spectrum of the corresponding linearized operator in suitable weighted spaces. They then show how the sole knowledge of this spectral gap in weighted spaces implies the finite codimensional nonradial stability of these solutions for smooth well localized initial data using energy bounds. The whole scheme draws a route map for the derivation of the existence and stability of self-similar blow up in nonradial energy super critical settings.

Time-Like Graphical Models
  • Language: en
  • Pages: 184

Time-Like Graphical Models

The author studies continuous processes indexed by a special family of graphs. Processes indexed by vertices of graphs are known as probabilistic graphical models. In 2011, Burdzy and Pal proposed a continuous version of graphical models indexed by graphs with an embedded time structure— so-called time-like graphs. The author extends the notion of time-like graphs and finds properties of processes indexed by them. In particular, the author solves the conjecture of uniqueness of the distribution for the process indexed by graphs with infinite number of vertices. The author provides a new result showing the stochastic heat equation as a limit of the sequence of natural Brownian motions on time-like graphs. In addition, the author's treatment of time-like graphical models reveals connections to Markov random fields, martingales indexed by directed sets and branching Markov processes.

Quadratic Vector Equations on Complex Upper Half-Plane
  • Language: en
  • Pages: 146

Quadratic Vector Equations on Complex Upper Half-Plane

The authors consider the nonlinear equation −1m=z+Sm with a parameter z in the complex upper half plane H, where S is a positivity preserving symmetric linear operator acting on bounded functions. The solution with values in H is unique and its z-dependence is conveniently described as the Stieltjes transforms of a family of measures v on R. In a previous paper the authors qualitatively identified the possible singular behaviors of v: under suitable conditions on S we showed that in the density of v only algebraic singularities of degree two or three may occur. In this paper the authors give a comprehensive analysis of these singularities with uniform quantitative controls. They also find a universal shape describing the transition regime between the square root and cubic root singularities. Finally, motivated by random matrix applications in the authors' companion paper they present a complete stability analysis of the equation for any z∈H, including the vicinity of the singularities.

Geometric Optics for Surface Waves in Nonlinear Elasticity
  • Language: en
  • Pages: 164

Geometric Optics for Surface Waves in Nonlinear Elasticity

This work is devoted to the analysis of high frequency solutions to the equations of nonlinear elasticity in a half-space. The authors consider surface waves (or more precisely, Rayleigh waves) arising in the general class of isotropic hyperelastic models, which includes in particular the Saint Venant-Kirchhoff system. Work has been done by a number of authors since the 1980s on the formulation and well-posedness of a nonlinear evolution equation whose (exact) solution gives the leading term of an approximate Rayleigh wave solution to the underlying elasticity equations. This evolution equation, which is referred to as “the amplitude equation”, is an integrodifferential equation of nonlo...

Rigid Character Groups, Lubin-Tate Theory, and (φ,Γ)-Modules
  • Language: en
  • Pages: 92

Rigid Character Groups, Lubin-Tate Theory, and (φ,Γ)-Modules

The construction of the p-adic local Langlands correspondence for GL2(Qp) uses in an essential way Fontaine's theory of cyclotomic (φ,Γ)-modules. Here cyclotomic means that Γ=Gal(Qp(μp∞)/Qp) is the Galois group of the cyclotomic extension of Qp. In order to generalize the p-adic local Langlands correspondence to GL2(L), where L is a finite extension of Qp, it seems necessary to have at our disposal a theory of Lubin-Tate (φ,Γ)-modules. Such a generalization has been carried out, to some extent, by working over the p-adic open unit disk, endowed with the action of the endomorphisms of a Lubin-Tate group. The main idea of this article is to carry out a Lubin-Tate generalization of the theory of cyclotomic (φ,Γ)-modules in a different fashion. Instead of the p-adic open unit disk, the authors work over a character variety that parameterizes the locally L-analytic characters on oL. They study (φ,Γ)-modules in this setting and relate some of them to what was known previously.

USPTO Image File Wrapper Petition Decisions 0239
  • Language: en
  • Pages: 999

USPTO Image File Wrapper Petition Decisions 0239

  • Type: Book
  • -
  • Published: Unknown
  • -
  • Publisher: USPTO

None

AI, Machine Learning and Deep Learning
  • Language: en
  • Pages: 420

AI, Machine Learning and Deep Learning

  • Type: Book
  • -
  • Published: 2023-06-05
  • -
  • Publisher: CRC Press

Today, Artificial Intelligence (AI) and Machine Learning/ Deep Learning (ML/DL) have become the hottest areas in information technology. In our society, many intelligent devices rely on AI/ML/DL algorithms/tools for smart operations. Although AI/ML/DL algorithms and tools have been used in many internet applications and electronic devices, they are also vulnerable to various attacks and threats. AI parameters may be distorted by the internal attacker; the DL input samples may be polluted by adversaries; the ML model may be misled by changing the classification boundary, among many other attacks and threats. Such attacks can make AI products dangerous to use. While this discussion focuses on ...