You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a scientific framework for integrated solutions to complex energy problems. It adopts a holistic, systems-based approach to demonstrate the potential of an energy systems engineering approach to systematically quantify different options at various levels of complexity (technology, plant, energy supply chain, mega-system). Utilizing modeling, simulation and optimization-based frameworks, along with a number of real-life applications, it focuses on advanced energy systems including energy supply chains, integrated biorefineries, energy planning and scheduling approaches and urban energy systems. Featuring contributions from leading researchers in the field, this work is useful for academics, researchers, industry practitioners in energy systems engineering, and all those who are involved in model-based energy systems.
This book presents a number of efficient techniques for solving large-scale production scheduling and planning problems in process industries. The main content is supplemented by a wealth of illustrations, while case studies on large-scale industrial applications, ranging from continuous to semicontinuous and batch processes, round out the coverage. The book examines a variety of complex, real-world problems, and demonstrates solutions that are applicable to scenarios and countries around the world. Specifically, these case studies include: • the production planning of the bottling stage of a major brewery at the Cervecería Cuauhtémoc Moctezuma (Heineken Int) in Mexico;• the production...
Computer-aided process engineering (CAPE) plays a key design and operations role in the process industries, from the molecular scale through managing complex manufacturing sites. The research interests cover a wide range of interdisciplinary problems related to the current needs of society and industry. ESCAPE 23 brings together researchers and practitioners of computer-aided process engineering interested in modeling, simulation and optimization, synthesis and design, automation and control, and education. The proceedings present and evaluate emerging as well as established research methods and concepts, as well as industrial case studies. - Contributions from the international community using computer-based methods in process engineering - Reviews the latest developments in process systems engineering - Emphasis on industrial and societal challenges
Computer aided process engineering (CAPE) plays a key design and operations role in the process industries. This conference features presentations by CAPE specialists and addresses strategic planning, supply chain issues and the increasingly important area of sustainability audits. Experts collectively highlight the need for CAPE practitioners to embrace the three components of sustainable development: environmental, social and economic progress and the role of systematic and sophisticated CAPE tools in delivering these goals. - Contributions from the international community of researchers and engineers using computing-based methods in process engineering - Review of the latest developments in process systems engineering - Emphasis on a systems approach in tackling industrial and societal grand challenges
The European Symposium on Computer Aided Process Engineering (ESCAPE) series presents the latest innovations and achievements of leading professionals from the industrial and academic communities. The ESCAPE series serves as a forum for engineers, scientists, researchers, managers and students to present and discuss progress being made in the area of computer aided process engineering (CAPE). European industries large and small are bringing innovations into our lives, whether in the form of new technologies to address environmental problems, new products to make our homes more comfortable and energy efficient or new therapies to improve the health and well being of European citizens. Moreover, the European Industry needs to undertake research and technological initiatives in response to humanity's "Grand Challenges," described in the declaration of Lund, namely, Global Warming, Tightening Supplies of Energy, Water and Food, Ageing Societies, Public Health, Pandemics and Security. Thus, the Technical Theme of ESCAPE 21 will be "Process Systems Approaches for Addressing Grand Challenges in Energy, Environment, Health, Bioprocessing & Nanotechnologies."
The 19th European Symposium on Computer Aided Process Engineering contains papers presented at the 19th European Symposium of Computer Aided Process Engineering (ESCAPE 19) held in Cracow, Poland, June 14-17, 2009.The ESCAPE series serves as a forum for scientists and engineers from academia and industry to discuss progress achieved in the area of CAPE.* CD-ROM that accompanies the book contains all research papers and contributions * International in scope with guest speeches and keynote talks from leaders in science and industry * Presents papers covering the latest research, key top areas and developments in computer aided process engineering (CAPE)
While the PSE community continues its focus on understanding, synthesizing, modeling, designing, simulating, analyzing, diagnosing, operating, controlling, managing, and optimizing a host of chemical and related industries using the systems approach, the boundaries of PSE research have expanded considerably over the years. While early PSE research was largely concerned with individual units and plants, the current research spans wide ranges of scales in size (molecules to processing units to plants to global multinational enterprises to global supply chain networks; biological cells to ecological webs) and time (instantaneous molecular interactions to months of plant operation to years of st...
The 10th International Symposium on Process Systems Engineering, PSE'09, will be held in Salvador-Bahia, Brazil, on August 16–20, 2009. The special focus of PSE 2009 is Sustainability, Energy, and Engineering.PSE 2009 is the tenth in the triennial series of international symposia on process systems engineering initiated in 1982. The meeting brings together the worldwide PSE community of researchers and practitioners who are involved in the creation and application of computing-based methodologies for planning, design, operation, control and maintenance of chemical and petrochemical process industries. PSE'09 will look at how PSE methods and tools can support sustainable resource systems, emerging technologies in the areas of green engineering, and environmentally conscious design of industrial processes.- sustainable resource systems - emerging technologies in the areas of green engineering - environmentally conscious design of industrial processes
The 10th International Symposium on Process Systems Engineering, PSE'09, will be held in Salvador-Bahia, Brazil on August 16-20, 2009. The special focus of PSE 2009 is Sustainability, Energy and Engineering. PSE 2009 is the tenth in the triennial series of international symposia on process systems engineering initiated in 1982. The meeting is brings together the worldwide PSE community of researchers and practitioners who are involved in the creation and application of computing-based methodologies for planning, design, operation, control and maintenance of chemical and petrochemical process industries. PSE'09 will look at how the PSE methods and tools can support sustainable resource systems and emerging technologies in the areas of green engineering: environmentally conscious design of industrial processes. PSE methods and tools support: - sustainable resource systems - emerging technologies in the areas of green engineering - environmentally conscious design of industrial processes
As the share of renewable generation increases in electric grids, the traditionally heat driven operation of combined heat and power plants (CHPs) reaches its limits. Thermal storage is required for a flexible operation of CHPs. This work proposes three novel methods to use a heating grid as thermal storage by exploiting its thermal dynamics. These include the first approach proving global optimality, a novel linear formulation of grid dynamics and an easily real world applicable approach.