You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Handbook of Algebra defines algebra as consisting of many different ideas, concepts and results. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. Each chapter of the book combines some of the features of both a graduate-level textbook and a research-level survey. This book is divided into eight sections. Section 1A focuses on linear algebra and discusses such concepts as matrix functions and equations and random matrices. Section 1B cover linear dependence and discusses matroids. Section 1D focuses on fields, Galois Theory, and algebraic number theory. Section 1F tackles generalizations of fields and related objects. Section 2A focuses on category theory, including the topos theory and categorical structures. Section 2B discusses homological algebra, cohomology, and cohomological methods in algebra. Section 3A focuses on commutative rings and algebras. Finally, Section 3B focuses on associative rings and algebras. This book will be of interest to mathematicians, logicians, and computer scientists.
This volume forms a valuable source of information on recent developments in research in combinatorics, with special regard to the geometric point of view. Topics covered include: finite geometries (arcs, caps, special varieties in a Galois space; generalized quadrangles; Benz planes; foundation of geometry), partial geometries, Buekenhout geometries, transitive permutation sets, flat-transitive geometries, design theory, finite groups, near-rings and semifields, MV-algebras, coding theory, cryptography and graph theory in its geometric and design aspects.
Galois connections provide the order- or structure-preserving passage between two worlds of our imagination - and thus are inherent in hu man thinking wherever logical or mathematical reasoning about cer tain hierarchical structures is involved. Order-theoretically, a Galois connection is given simply by two opposite order-inverting (or order preserving) maps whose composition yields two closure operations (or one closure and one kernel operation in the order-preserving case). Thus, the "hierarchies" in the two opposite worlds are reversed or transported when passing to the other world, and going forth and back becomes a stationary process when iterated. The advantage of such an "adjoint sit...
This volume contains one invited lecture which was presented by the 1994 Fields Medal ist Professor E. Zelmanov and twelve other papers which were presented at the Third International Conference on Algebra and Their Related Topics at Chang Jung Christian University, Tainan, Republic of China, during the period June 26-July 1, 200l. All papers in this volume have been refereed by an international referee board and we would like to express our deepest thanks to all the referees who were so helpful and punctual in submitting their reports. Thanks are also due to the Promotion and Research Center of National Science Council of Republic of China and the Chang Jung Christian University for their g...
This volume gives a state of the art of triangular norms which can be used for the generalization of several mathematical concepts, such as conjunction, metric, measure, etc. 16 chapters written by leading experts provide a state of the art overview of theory and applications of triangular norms and related operators in fuzzy logic, measure theory, probability theory, and probabilistic metric spaces.Key Features:- Complete state of the art of the importance of triangular norms in various mathematical fields- 16 self-contained chapters with extensive bibliographies cover both the theoretical background and many applications- Chapter authors are leading authorities in their fields- Triangular ...
Semigroups, Automata, Universal Algebra, Varieties
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.
Recent developments in various algebraic structures and the applications of those in different areas play an important role in Science and Technology. One of the best tools to study the non-linear algebraic systems is the theory of Near-rings.The forward note by G
This work presents new and old constructions of nearrings. Links between properties of the multiplicative of nearrings (as regularity conditions and identities) and the structure of nearrings are studied. Primality and minimality properties of ideals are collected. Some types of `simpler' nearrings are examined. Some nearrings of maps on a group are reviewed and linked with group-theoretical and geometrical questions. Audience: Researchers working in nearring theory, group theory, semigroup theory, designs, and translation planes. Some of the material will be accessible to graduate students.
This book gives a comprehensive introduction to Universal Algebraic Logic. The three main themes are (i) universal logic and the question of what logic is, (ii) duality theories between the world of logics and the world of algebra, and (iii) Tarskian algebraic logic proper including algebras of relations of various ranks, cylindric algebras, relation algebras, polyadic algebras and other kinds of algebras of logic. One of the strengths of our approach is that it is directly applicable to a wide range of logics including not only propositional logics but also e.g. classical first order logic and other quantifier logics. Following the Tarskian tradition, besides the connections between logic a...