You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
*THIS BOOK IS AVAILABLE AS OPEN ACCESS BOOK ON SPRINGERLINK* One of the most significant tasks facing mathematics educators is to understand the role of mathematical reasoning and proving in mathematics teaching, so that its presence in instruction can be enhanced. This challenge has been given even greater importance by the assignment to proof of a more prominent place in the mathematics curriculum at all levels. Along with this renewed emphasis, there has been an upsurge in research on the teaching and learning of proof at all grade levels, leading to a re-examination of the role of proof in the curriculum and of its relation to other forms of explanation, illustration and justification. T...
In the four decades since Imre Lakatos declared mathematics a "quasi-empirical science," increasing attention has been paid to the process of proof and argumentation in the field -- a development paralleled by the rise of computer technology and the mounting interest in the logical underpinnings of mathematics. Explanantion and Proof in Mathematics assembles perspectives from mathematics education and from the philosophy and history of mathematics to strengthen mutual awareness and share recent findings and advances in their interrelated fields. With examples ranging from the geometrists of the 17th century and ancient Chinese algorithms to cognitive psychology and current educational practi...
This book presents chapters exploring the most recent developments in the role of technology in proving. The full range of topics related to this theme are explored, including computer proving, digital collaboration among mathematicians, mathematics teaching in schools and universities, and the use of the internet as a site of proof learning. Proving is sometimes thought to be the aspect of mathematical activity most resistant to the influence of technological change. While computational methods are well known to have a huge importance in applied mathematics, there is a perception that mathematicians seeking to derive new mathematical results are unaffected by the digital era. The reality is...
This book is the first major study of advanced mathematical thinking as performed by mathematicians and taught to students in senior high school and university. Topics covered include the psychology of advanced mathematical thinking, the processes involved, mathematical creativity, proof, the role of definitions, symbols, and reflective abstraction. It is highly appropriate for the college professor in mathematics or the general mathematics educator.
This book explores new trends and developments in mathematics education research related to proof and proving, the implications of these trends and developments for theory and practice, and directions for future research. With contributions from researchers working in twelve different countries, the book brings also an international perspective to the discussion and debate of the state of the art in this important area. The book is organized around the following four themes, which reflect the breadth of issues addressed in the book: • Theme 1: Epistemological issues related to proof and proving; • Theme 2: Classroom-based issues related to proof and proving; • Theme 3: Cognitive and curricular issues related to proof and proving; and • Theme 4: Issues related to the use of examples in proof and proving. Under each theme there are four main chapters and a concluding chapter offering a commentary on the theme overall.
This volume is a case study of education reform and innovation using technology that examines the issue from a wide variety of perspectives. It brings together the views and experiences of software designers, curriculum writers, teachers and students, researchers and administrators. Thus, it stands in contrast to other analyses of innovation that tend to look through the particular prisms of research, classroom practice, or software design. The Geometric Supposer encourages a belief in a better tomorrow for schools. On its surface, the Geometric Supposer provides the means for radically altering the way in which geometry is taught and the quality of learning that can be achieved. At a deeper level, however, it suggests a powerful metaphor for improving education that can be played out in many different instructional contexts.
This book is one of the first to attempt a systematic in-depth analysis of assessment in mathematics education in most of its important aspects: it deals with assessment in mathematics education from historical, psychological, sociological, epistmological, ideological, and political perspectives. The book is based on work presented at an invited international ICMI seminar and includes chapters by a team of outstanding and prominent scholars in the field of mathematics education. Based on the observation of an increasing mismatch between the goals and accomplishments of mathematics education and prevalent assessment modes, the book assesses assessment in mathematics education and its effects....
Didactics of Mathematics as a Scientific Discipline describes the state of the art in a new branch of science. Starting from a general perspective on the didactics of mathematics, the 30 original contributions to the book, drawn from 10 different countries, go on to identify certain subdisciplines and suggest an overall structure or `topology' of the field. The book is divided into eight sections: (1) Preparing Mathematics for Students; (2) Teacher Education and Research on Teaching; (3) Interaction in the Classroom; (4) Technology and Mathematics Education; (5) Psychology of Mathematical Thinking; (6) Differential Didactics; (7) History and Epistemology of Mathematics and Mathematics Educat...
Tries to refine the philosophy of mathematics to reflect what mathematicians really do, and argues that mathematics must be understood in a social context.
Three-fourths of scientific research in the United States is funded by special interests. Many of these groups have specific practical goals, such as developing pharmaceuticals or establishing that a pollutant causes only minimal harm. For groups with financial conflicts of interest, their scientific findings often can be deeply flawed. To uncover and assess these scientific flaws, award-winning biologist and philosopher of science Kristin Shrader-Frechette uses the analytical tools of classic philosophy of science. She identifies and evaluates the concepts, data, inferences, methods, models, and conclusions of science tainted by the influence of special interests. As a result, she challenge...