You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Invexity and Optimization presents results on invex function and their properties in smooth and nonsmooth cases, pseudolinearity and eta-pseudolinearity. Results on optimality and duality for a nonlinear scalar programming problem are presented, second and higher order duality results are given for a nonlinear scalar programming problem, and saddle point results are also presented. Invexity in multiobjective programming problems and Kuhn-Tucker optimality conditions are given for a multiobjecive programming problem, Wolfe and Mond-Weir type dual models are given for a multiobjective programming problem and usual duality results are presented in presence of invex functions. Continuous-time multiobjective problems are also discussed. Quadratic and fractional programming problems are given for invex functions. Symmetric duality results are also given for scalar and vector cases.
The book contains reproductions of the most important papers that gave birth to the first developments in nonlinear programming. Of particular interest is W. Karush's often quoted Master Thesis, which is published for the first time. The anthology includes an extensive preliminary chapter, where the editors trace out the history of mathematical programming, with special reference to linear and nonlinear programming.
The subject of (static) optimization, also called mathematical programming, is one of the most important and widespread branches of modern mathematics, serving as a cornerstone of such scientific subjects as economic analysis, operations research, management sciences, engineering, chemistry, physics, statistics, computer science, biology, and social sciences. This book presents a unified, progressive treatment of the basic mathematical tools of mathematical programming theory. The authors expose said tools, along with results concerning the most common mathematical programming problems formulated in a finite-dimensional setting, forming the basis for further study of the basic questions on t...
A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man...
2001 essay collection on the Italian Church's attempt to control and censor 'knowledge' during the counter-Reformation.
In The Lay Saint, Mary Harvey Doyno investigates the phenomenon of saintly cults that formed around pious merchants, artisans, midwives, domestic servants, and others in the medieval communes of northern and central Italy. Drawing on a wide array of sources—vitae documenting their saintly lives and legends, miracle books, religious art, and communal records—Doyno uses the rise of and tensions surrounding these civic cults to explore medieval notions of lay religiosity, charismatic power, civic identity, and the church's authority in this period. Although claims about laymen's and laywomen's miraculous abilities challenged the church's expanding political and spiritual dominion, both papa...
With contributions by numerous experts
The place of tort law -- Negligence (and strict liability) -- Recovery for physical harms : the case of medical malpractice -- Non-economic damage and primary victims -- Recovery of secondary victims for economic harm and emotional distress -- Compensation for pure economic loss -- Causation -- Products liability.
The papers collected in this volume are contributions to T.I.Tech./K.E.S. Conference on Nonlinear and Convex Analysis in Economic Theory, which was held at Keio University, July 2-4, 1993. The conference was organized by Tokyo Institute of Technology (T. I. Tech.) and the Keio Economic Society (K. E. S.) , and supported by Nihon Keizai Shimbun Inc .. A lot of economic problems can be formulated as constrained optimiza tions and equilibrations of their solutions. Nonlinear-convex analysis has been supplying economists with indispensable mathematical machineries for these problems arising in economic theory. Conversely, mathematicians working in this discipline of analysis have been stimulated...