You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The present volume contains the contributions of the keynote speakers of the BIOMAT 2007 Symposium as well as selected contributed papers in the areas of mathematical biology, biological physics, biophysics and bioinformatics. It contains new results on some aspects of Lotka-Volterra equations, the proposal of using differential geometry to model neurosurgical tools, recent data on epidemiological modeling, pattern recognition and comprehensive reviews on the structure of proteins, the folding problem and the influence of Allee effects on population dynamics.This book contains some original results on the growth of gliomas: the role played by membrane channels on activity-dependent modulation of spike transmission; a proposal for reconsidering the concept of gene and the understanding of the mechanisms responsible for gene expression; a differential geometric approach to the influence of the drying effect on the dynamics of pods of Leguminosae; the comparison of agent-based models with the approach of differential equations on the study of selection mechanisms in germinal centers; and the synchronization phenomenon for protocell systems driven by linear kinetic equations.
The book contains a selection of articles on special research topics on Mathematical Biology and the interdisciplinary fields of mathematical modelling of biosystems. The treatment is both pedagogical and advanced to enhance future scientific research. We include comprehensive reviews written by prominent leaders of scientific research groups, new results on Population Dynamics such as Hybrid Discrete-Continuous Models of Cell Populations and the Hopf bifurcation on Predator-Prey Models, and some state of the art research on Medical Physics such as Optimization Methods applied to Raman Spectroscopy. Other topics covered focus on evolution biology, infectious diseases, DNA structure and many more.
The present volume contains the contributions of the keynote speakers of the BIOMAT 2007 Symposium as well as selected contributed papers in the areas of mathematical biology, biological physics, biophysics and bioinformatics. It contains new results on some aspects of Lotka?Volterra equations, the proposal of using differential geometry to model neurosurgical tools, recent data on epidemiological modeling, pattern recognition and comprehensive reviews on the structure of proteins, the folding problem and the influence of Allee effects on population dynamics.This book contains some original results on the growth of gliomas: the role played by membrane channels on activity-dependent modulation of spike transmission; a proposal for reconsidering the concept of gene and the understanding of the mechanisms responsible for gene expression; a differential geometric approach to the influence of the drying effect on the dynamics of pods of Leguminosae; the comparison of agent-based models with the approach of differential equations on the study of selection mechanisms in germinal centers; and the synchronization phenomenon for protocell systems driven by linear kinetic equations.
This useful volume contains the contributions from the keynote speakers of the BIOMAT 2006 symposium as well as selected contributions in the areas of mathematical biology, biological physics, biophysics and bioinformatics. It contains new results, contributions and comprehensive reviews to the mathematical modeling of infectious diseases such as HIV, tuberculosis and hepatitis B. Mathematical models for physiological disorders including tumors, aneurysms and metabolic diseases are discussed and analyzed.This book also contains original contributions to de novo protein structure prediction and multi-objective optimization techniques applied to protein tertiary structure prediction. DNA evolutionary issues, stem cell biology, dynamics of biologic membranes, reaction-diffusion mechanisms, population dynamics, and bioeconomics are covered and discussed throughout this book.
None
Este libro constituye el cuarto volumen de la serie “Matemáticas para Ingeniería”, que se centra en el álgebra lineal y la geometría vectorial. Estas áreas proporcionan a los ingenieros e ingenieras las herramientas matemáticas esenciales para facilitar el cálculo, modelación y computación de fenómenos naturales. En esta obra, nos sumergimos en la teoría de los espacios vectoriales y las transformaciones lineales, ofreciendo una gran variedad de ejercicios resueltos diseñados para preparar a los estudiantes en los desafíos que propone su formación en la Pontificia Universidad Católica de Valparaíso. Es un texto creado para acompañar a los estudiantes en sus tiempos de estudio personal, que incluye desarrollos en detalle, explicados con un lenguaje adecuado a este nivel curricular. Además, incorporamos en cada uno de sus capítulos presentaciones algebraicas y geométricas de modo que todos los estudiantes puedan encontrar una ruta que facilite la comprensión de sus contenidos, generando una base sólida en los conocimientos que serán aplicados en diversas especialidades dentro del campo de la ingeniería en el futuro.
Este libro es el primero de la colección “Matemáticas para Ingeniería”, que se centra en el aprendizaje y consolidación de los conocimientos matemáticos previos necesarios para todo estudiante de ingeniería de la PUCV. Este, constituirá un apoyo para cursar las asignaturas de cálculo diferencial, cálculo integral y álgebra lineal. Es por ello, que este texto fue creado con el objetivo de ser la guía en el trabajo autónomo para los estudiantes de la asignatura “Fundamentos de matemáticas para Ingeniería” de la PUCV. Este texto cuenta con siete capítulos, comenzando con la unidad de “Números Reales”, para luego dar paso a “Sistemas de ecuaciones e inecuaciones lineales, Geometría Analítica, Funciones, Trigonometría, Números Complejos y Polinomios”. A lo largo de sus páginas los estudiantes encontrarán una exposición detallada sobre cada uno de los contenidos propios de cada unidad, los cuales están presentados con un lenguaje matemático accesible y acompañado con una gran variedad de ejemplos desarrollados y propuestos.