You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Since the 3rd edition appeared, a fast evolution of the field has occurred. The fourth edition of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers. The contents include such important topics as self- and cross-phase modulation, stimulated Raman and Brillouin scattering, four-wave mixing, modulation instability, and optical solitons. Many new figures have been added to help illustrate the concepts discussed in the book. New to this edition are chapters on highly nonlinear fibers and and the novel nonlinear effects that have been observed in these fibers since 2000. Such a chapter should be of interest to people in the field of new wavelengths generation, which has potential application in medical diagnosis and treatments, spectroscopy, new wavelength lasers and light sources, etc. Continues to be industry bestseller providing unique source of comprehensive coverage on the subject of nonlinear fiber optics Fourth Edition is a completely up-to-date treatment of the nonlinear phenomena occurring inside optical fibers Includes 2 NEW CHAPTERS on the properties of highly nonlinear fibers and their novel nonlinear effects
CD-ROM contains: a software package for designing fiber-optic communication systems called "OptiSystem Lite" and a set of problems for each chapter.
The state of the art of modern lightwave system design Recent advances in lightwave technology have led to an explosion ofhigh-speed global information systems throughout the world.Responding to the growth of this exciting new technology, LightwaveTechnology provides a comprehensive and up-to-date account of theunderlying theory, development, operation, and management of thesesystems from the perspective of both physics and engineering. The first independent volume of this two-volume set, Components andDevices, deals with the multitude of silica- andsemiconductor-based optical devices. This second volume,Telecommunication Systems, helps readers understand the design ofmodern lightwave system...
Since its invention in 1962, the semiconductor laser has come a long way. Advances in material purity and epitaxial growth techniques have led to a variety of semiconductor lasers covering a wide wavelength range of 0. 3- 100 ~m. The development during the 1970s of GaAs semiconductor lasers, emitting in the near-infrared region of 0. 8-0. 9 ~m, resulted in their use for the first generation of optical fiber communication systems. However, to take advantage oflow losses in silica fibers occurring around 1. 3 and 1. 55 ~m, the emphasis soon shifted toward long-wavelength semiconductor lasers. The material system of choice in this wavelength range has been the quaternary alloy InGaAsP. During t...
The development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments. The book presents sound coverage of the fundamentals of lightwave technology, along with material on pulse compression techniques and rare-earth-doped fiber amplifiers and lasers. The extensively revised chapters include information on fiber-optic communication systems and the ultrafast signal processing techniques that make use of nonlinear phenomena in optical fibers. New ...
This self-contained text describes the underlying theory and approximate quantum models of real nanodevices for nanotechnology applications.
Optical fiber telecommunications depend upon light traveling great distances through optical fibers. As light travels it tends to disperse and this results in some degree of signal loss. Raman amplification is a technique that is effective in any fiber to amplify the signal light as it travels through transmission fibers, compensating for inevitable signal loss. - First comprehensive guide to Raman amplification, a technique whose use has exploded since 1997 in order to upgrade fiber capacity - Accessible to professionals just entering the field of optical fiber telecommunications - Detailed enough for experts to use as a reference
None
Vols. for 1977- consist of two parts: Chemistry, biological sciences, engineering sciences, metallurgy and materials science (issued in the spring); and Physics, electronics, mathematics, geosciences (issued in the fall).
DescriptionThis book provides a detailed overview of the evolution of undersea communications systems, with emphasis on the most recent breakthroughs of optical submarine cable technologies based upon Wavelength Division Multiplexing, optical amplification, new-generation optical fibers, and high-speed digital electronics. The role played by submarine-communication systems in the development of high-speed networks and associated market demands for multiplying Internet and broadband services is also covered.Importance of This TopicThis book will fill the gap between highly specialized papers from large international conferences and broad-audience technology review updates. The book provides a full overview of the evolution in the field and conveys the dimension of the large undersea projects. In addition, the book uncovers the myths surrounding marine operations and installations in that domain, which have remained known so far to only very few specialists.