Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Approximation and Computation
  • Language: en
  • Pages: 482

Approximation and Computation

Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanović, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational algorithms, and multidisciplinary applications. Special features of this volume: - Presents results an...

Nonlinear Analysis
  • Language: en
  • Pages: 898

Nonlinear Analysis

The volume will consist of about 40 articles written by some very influential mathematicians of our time and will expose the latest achievements in the broad area of nonlinear analysis and its various interdisciplinary applications.

Analytic Number Theory, Approximation Theory, and Special Functions
  • Language: en
  • Pages: 873

Analytic Number Theory, Approximation Theory, and Special Functions

  • Type: Book
  • -
  • Published: 2014-07-08
  • -
  • Publisher: Springer

This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics and other computational and applied sciences.

Extremal Problems and Inequalities of Markov-Bernstein Type for Algebraic Polynomials
  • Language: en
  • Pages: 442

Extremal Problems and Inequalities of Markov-Bernstein Type for Algebraic Polynomials

  • Type: Book
  • -
  • Published: 2022-02-15
  • -
  • Publisher: Elsevier

Bernstein-type Inequalities for Polynomials and Rational Functions is an integrated, powerful and clear presentation of the emergent field in approximation theory. It presents a unified description of solution norms relevant to complex polynomials, rational functions and exponential functions. Primarily for graduate students and first year PhDs, this book is useful for any researcher exploring problems which require derivative estimates. It is particularly useful for those studying inverse problems in approximation theory. Applies Bernstein-type Inequalities to any problem where derivative estimates are necessary Presents complex math in a clean and simple way, progressing readers from polynomials into rational functions Contains exhaustive references with thousands of citations to articles and books Features methods to solve inverse problems across approximation theory Includes open problems for further research

Numerical Analysis
  • Language: en
  • Pages: 611

Numerical Analysis

Revised and updated, this second edition of Walter Gautschi's successful Numerical Analysis explores computational methods for problems arising in the areas of classical analysis, approximation theory, and ordinary differential equations, among others. Topics included in the book are presented with a view toward stressing basic principles and maintaining simplicity and teachability as far as possible, while subjects requiring a higher level of technicality are referenced in detailed bibliographic notes at the end of each chapter. Readers are thus given the guidance and opportunity to pursue advanced modern topics in more depth. Along with updated references, new biographical notes, and enhanced notational clarity, this second edition includes the expansion of an already large collection of exercises and assignments, both the kind that deal with theoretical and practical aspects of the subject and those requiring machine computation and the use of mathematical software. Perhaps most notably, the edition also comes with a complete solutions manual, carefully developed and polished by the author, which will serve as an exceptionally valuable resource for instructors.

Differential and Integral Inequalities
  • Language: en
  • Pages: 848

Differential and Integral Inequalities

Theories, methods and problems in approximation theory and analytic inequalities with a focus on differential and integral inequalities are analyzed in this book. Fundamental and recent developments are presented on the inequalities of Abel, Agarwal, Beckenbach, Bessel, Cauchy–Hadamard, Chebychev, Markov, Euler’s constant, Grothendieck, Hilbert, Hardy, Carleman, Landau–Kolmogorov, Carlson, Bernstein–Mordell, Gronwall, Wirtinger, as well as inequalities of functions with their integrals and derivatives. Each inequality is discussed with proven results, examples and various applications. Graduate students and advanced research scientists in mathematical analysis will find this reference essential to their understanding of differential and integral inequalities. Engineers, economists, and physicists will find the highly applicable inequalities practical and useful to their research.

Functional Analysis in Interdisciplinary Applications
  • Language: en
  • Pages: 485

Functional Analysis in Interdisciplinary Applications

  • Type: Book
  • -
  • Published: 2017-12-12
  • -
  • Publisher: Springer

This volume presents current research in functional analysis and its applications to a variety of problems in mathematics and mathematical physics. The book contains over forty carefully refereed contributions to the conference “Functional Analysis in Interdisciplinary Applications” (Astana, Kazakhstan, October 2017). Topics covered include the theory of functions and functional spaces; differential equations and boundary value problems; the relationship between differential equations, integral operators and spectral theory; and mathematical methods in physical sciences. Presenting a wide range of topics and results, this book will appeal to anyone working in the subject area, including researchers and students interested to learn more about different aspects and applications of functional analysis.

Trigonometric Sums and Their Applications
  • Language: en
  • Pages: 313

Trigonometric Sums and Their Applications

This volume presents in a unified manner both classic as well as modern research results devoted to trigonometric sums. Such sums play an integral role in the formulation and understanding of a broad spectrum of problems which range over surprisingly many and different research areas. Fundamental and new developments are presented to discern solutions to problems across several scientific disciplines. Graduate students and researchers will find within this book numerous examples and a plethora of results related to trigonometric sums through pure and applied research along with open problems and new directions for future research.

Mathematical Analysis, Approximation Theory and Their Applications
  • Language: en
  • Pages: 745

Mathematical Analysis, Approximation Theory and Their Applications

  • Type: Book
  • -
  • Published: 2016-06-03
  • -
  • Publisher: Springer

Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.

Walter Gautschi, Volume 3
  • Language: en
  • Pages: 770

Walter Gautschi, Volume 3

Walter Gautschi has written extensively on topics ranging from special functions, quadrature and orthogonal polynomials to difference and differential equations, software implementations, and the history of mathematics. He is world renowned for his pioneering work in numerical analysis and constructive orthogonal polynomials, including a definitive textbook in the former, and a monograph in the latter area. This three-volume set, Walter Gautschi: Selected Works with Commentaries, is a compilation of Gautschi’s most influential papers and includes commentaries by leading experts. The work begins with a detailed biographical section and ends with a section commemorating Walter’s prematurel...