You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In this volume, a result of The CIME Summer School held in Cetraro, Italy, in 2006, four leading specialists present different aspects of quantum transport modeling. It provides an excellent basis for researchers in this field.
This book provides an introduction to the theory and numerical developments of the homogenization method. It's main features are: a comprehensive presentation of homogenization theory; an introduction to the theory of two-phase composite materials; a detailed treatment of structural optimization by using homogenization; a complete discussion of the resulting numerical algorithms with many documented test problems. It will be of interest to researchers, engineers, and advanced graduate students in applied mathematics, mechanical engineering, and structural optimization.
This self-contained introduction to numerical linear algebra provides a comprehensive, yet concise, overview of the subject. It includes standard material such as direct methods for solving linear systems and least-squares problems, error, stability and conditioning, basic iterative methods and the calculation of eigenvalues. Later chapters cover more advanced material, such as Krylov subspace methods, multigrid methods, domain decomposition methods, multipole expansions, hierarchical matrices and compressed sensing. The book provides rigorous mathematical proofs throughout, and gives algorithms in general-purpose language-independent form. Requiring only a solid knowledge in linear algebra and basic analysis, this book will be useful for applied mathematicians, engineers, computer scientists, and all those interested in efficiently solving linear problems.
This book introduces the basic ideas to build discontinuous Galerkin methods and, at the same time, incorporates several recent mathematical developments. The presentation is to a large extent self-contained and is intended for graduate students and researchers in numerical analysis. The material covers a wide range of model problems, both steady and unsteady, elaborating from advection-reaction and diffusion problems up to the Navier-Stokes equations and Friedrichs' systems. Both finite element and finite volume viewpoints are exploited to convey the main ideas underlying the design of the approximation. The analysis is presented in a rigorous mathematical setting where discrete counterparts of the key properties of the continuous problem are identified. The framework encompasses fairly general meshes regarding element shapes and hanging nodes. Salient implementation issues are also addressed.
Numerical Analysis and Optimization familiarises students with mathematical models (PDEs) and methods of numerical solution and optimization. Including numerous exercises and examples, this is an ideal text for advanced students in Applied Mathematics, Engineering, Physical Science and Computer Science.
This book is a collection of thoroughly refereed papers presented at the 27th IFIP TC 7 Conference on System Modeling and Optimization, held in Sophia Antipolis, France, in June/July 2015. The 48 revised papers were carefully reviewed and selected from numerous submissions. They cover the latest progress in their respective areas and encompass broad aspects of system modeling and optimiza-tion, such as modeling and analysis of systems governed by Partial Differential Equations (PDEs) or Ordinary Differential Equations (ODEs), control of PDEs/ODEs, nonlinear optimization, stochastic optimization, multi-objective optimization, combinatorial optimization, industrial applications, and numericsof PDEs.
This collection of articles and surveys is devoted to Harmonic Analysis, related Partial Differential Equations and Applications and in particular to the fields of research to which Richard L. Wheeden made profound contributions. The papers deal with Weighted Norm inequalities for classical operators like Singular integrals, fractional integrals and maximal functions that arise in Harmonic Analysis. Other papers deal with applications of Harmonic Analysis to Degenerate Elliptic equations, variational problems, Several Complex variables, Potential theory, free boundaries and boundary behavior of functions.
Proceedings of the NATO Advanced Research Workshop, Sesimbra, Portugal, June 20-26, 1992
The book provides a pedagogic and comprehensive introduction to homogenization theory with a special focus on problems set for non-periodic media. The presentation encompasses both deterministic and probabilistic settings. It also mixes the most abstract aspects with some more practical aspects regarding the numerical approaches necessary to simulate such multiscale problems. Based on lecture courses of the authors, the book is suitable for graduate students of mathematics and engineering.
A unique and timely book on understanding and tailoring the flow of fluids in porous materials Porous media play a key role in chemical processes, gas and water purification, gas storage and the development of new multifunctional materials. Understanding hydrodynamics in porous media is decisive for enabling a wide range of applications in materials science and chemical engineering. This all-encompassing book offers a timely overview of all flow and transport processes in which chemical or physicochemical phenomena such as dissolution, phase transition, reactions, adsorption, diffusion, capillarity, and surface phenomena are essential. It brings together both theoretical and experimental res...