You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book brings a reader to the cutting edge of several important directions of the contemporary probability theory, which in many cases are strongly motivated by problems in statistical physics. The authors of these articles are leading experts in the field and the reader will get an exceptional panorama of the field from the point of view of scientists who played, and continue to play, a pivotal role in the development of the new methods and ideas, interlinking it with geometry, complex analysis, conformal field theory, etc., making modern probability one of the most vibrant areas in mathematics.
Expository articles on random matrix theory emphasizing the exchange of ideas between the physical and mathematical communities.
An introduction to the modern representation theory of big groups, exploring its connections to probability and algebraic combinatorics.
Proceedings of the NATO Advanced Study Institute, held in Cambridge, UK, from 25th June to 6th July, 2001
The representation theory of the symmetric groups is a classical topic that, since the pioneering work of Frobenius, Schur and Young, has grown into a huge body of theory, with many important connections to other areas of mathematics and physics. This self-contained book provides a detailed introduction to the subject, covering classical topics such as the Littlewood–Richardson rule and the Schur–Weyl duality. Importantly the authors also present many recent advances in the area, including Lassalle's character formulas, the theory of partition algebras, and an exhaustive exposition of the approach developed by A. M. Vershik and A. Okounkov. A wealth of examples and exercises makes this an ideal textbook for graduate students. It will also serve as a useful reference for more experienced researchers across a range of areas, including algebra, computer science, statistical mechanics and theoretical physics.
The subject of symmetric functions began with the work of Jacobi, Schur, Weyl, Young and others on the Schur polynomials. In the 1950's and 60's, far-reaching generalizations of Schur polynomials were obtained by Hall and Littlewood (independently) and, in a different direction, by Jack. In the 1980's, Macdonald unified these developments by introducing a family of polynomials associated with arbitrary root systems. The last twenty years have witnessed considerable progress in this area, revealing new and profound connections with representation theory, algebraic geometry, combinatorics, special functions, classical analysis and mathematical physics. All these fields and more are represented...
This volume contains the proceedings of the First Workshop “Matemáticos Mexicanos Jóvenes en el Mundo”, held from August 22–24, 2012, at Centro de Investigación en Matemáticas (CIMAT) in Guanajuato, Mexico. - See more at: http://bookstore.ams.org/conm-657/#sthash.cUjwTcvX.dpuf This volume contains the proceedings of the First Workshop "Matemáticos Mexicanos Jóvenes en el Mundo", held from August 22-24, 2012, at Centro de Investigación en Matemáticas (CIMAT) in Guanajuato, Mexico. One of the main goals of this meeting was to present different research directions being pursued by young Mexican mathematicians based in other countries, such as Brazil, Canada, Colombia, Estonia, Ger...
The European Congress of Mathematics, held every four years, has established itself as a major international mathematical event. Following those in Paris, 1992, Budapest, 1996, and Barcelona, 2000, the Fourth European Congress of Mathematics took place in Stockholm, Sweden, June 27 to July 2, 2004, with 913 participants from 65 countries. Apart from seven plenary and thirty three invited lectures, there were six Science Lectures covering the most relevant aspects of mathematics in science and technology. Moreover, twelve projects of the EU Research Training Networks in Mathematics and Information Sciences, as well as Programmes from the European Science Foundation in Physical and Engineering Sciences, were presented. Ten EMS Prizes were awarded to young European mathematicians who have made a particular contribution to the progress of mathematics. Five of the prizewinners were independently chosen by the 4ECM Scientific Committee as plenary or invited speakers. The other five prizewinners gave their lectures in parallel sessions. Most of these contributions are now collected in this volume, providing a permanent record of so much that is best in mathematics today.
In a surprising sequence of developments, the longest increasing subsequence problem, originally mentioned as merely a curious example in a 1961 paper, has proven to have deep connections to many seemingly unrelated branches of mathematics, such as random permutations, random matrices, Young tableaux, and the corner growth model. The detailed and playful study of these connections makes this book suitable as a starting point for a wider exploration of elegant mathematical ideas that are of interest to every mathematician and to many computer scientists, physicists and statisticians. The specific topics covered are the Vershik-Kerov-Logan-Shepp limit shape theorem, the Baik-Deift-Johansson theorem, the Tracy-Widom distribution, and the corner growth process. This exciting body of work, encompassing important advances in probability and combinatorics over the last forty years, is made accessible to a general graduate-level audience for the first time in a highly polished presentation.