You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This text presents the results of broad, interdisciplinary effort to study proteins in physical and evolutionary perpective. Among authors are physicists, computational, chemists, crystallographers and evolutionary biologists. Experimental and theoretical developments from molecules to cells are presented, providing a broad picture of modern biophysical chemistry.
Evolution is a critical challenge for many areas of science, technology and development of society. The book reviews general evolutionary facts such as origin of life and evolution of the genome and clues to evolution through simple systems. Emerging areas of science such as "systems biology" and "bio-complexity" are founded on the idea that phenomena need to be understood in the context of highly interactive processes operating at different levels and on different scales. This is where physics meets complexity in nature, and where we must begin to learn about complexity if we are to understand it. Similarly, there is an increasingly urgent need to understand and predict the evolutionary beh...
An introduction to the emerging field of cancer physics, integrating cancer biology with approaches from theoretical and applied physics.
This book, first published in 2005, is a discussion for advanced physics students of how to use physics to model biological systems.
One of the great unsolved problems of science and also of physics is the prediction of the three dimensional structure of a protein from its amino acid sequence. It may be stated that the deep connection existing between physics and protein folding is not so much, or in any case not only, through physical methods, but through physical concepts.
This book provides a timely summary of physical modeling approaches applied to biological datasets that describe conformational properties of chromosomes in the cell nucleus. Chapters explain how to convert raw experimental data into 3D conformations, and how to use models to better understand biophysical mechanisms that control chromosome conformation. The coverage ranges from introductory chapters to modeling aspects related to polymer physics, and data-driven models for genomic domains, the entire human genome, epigenome folding, chromosome structure and dynamics, and predicting 3D genome structure.
Epigenetics and Systems Biology highlights the need for collaboration between experiments and theoretical modeling that is required for successful application of systems biology in epigenetics studies. This book breaks down the obstacles which exist between systems biology and epigenetics researchers due to information barriers and segmented research, giving real-life examples of successful combinations of systems biology and epigenetics experiments. Each section covers one type of modeling and one set of epigenetic questions on which said models have been successfully applied. In addition, the book highlights how modeling and systems biology relate to studies of RNA, DNA, and genome instability, mechanisms of DNA damage signaling and repair, and the effect of the environment on genome stability. - Presents original research in a wider perspective to reveal potential for synergies between the two fields of study - Provides the latest experiments in primary literature for the modeling audience - Includes chapters written by experts in systems biology and epigenetics who have vast experience studying clinical applications
Due to recent advancements in the development of numerical algorithms and computational hardware, computer simulations of biological membranes, often requiring use of substantial computational resources, are now reaching a mature stage. Since molecular processes in membranes occur on a multitude of spatial and time scales, molecular simulations of membranes can also serve as a testing ground for use of multi-scale simulation techniques. This book addresses some of the important issues related to understanding properties and behavior of model biological membranes and it Shows how simulations improve our understanding of biological membranes and makes connections with experimental results. Pre...