You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book focuses on the thermal transformations of various types of metal chelates, e.g. low molecular weight and polymeric metal chelates, coordination polymers and metal-organic frameworks. It analyzes the major advances and the problems in the preparation of metal oxide materials, mixed-oxide nanocomposites, carbon materials and polymer derived non-oxide nanocomposites by the thermolysis of different metal chelates. It also highlights the influence of the spatial and electronic structure of metal chelates on the mechanism and kinetics of their thermal transformations, and discusses important issues like conjugate thermolysis and computer modelling of the thermolysis process. This book is useful for researchers experienced in thermolysis as well as for young scientists interested in this area of science.
This book deals with the chemistry of polymeric metal chelates. The main results and the production and chemical structure of polymers with chelate units as well as the specificity of metal complex binding of different structure are presented here. This book also reveals the transformations which components undergo in the course of chelation. Special attention is paid not only to synthetic but also to natural (including living) systems. The usage of polymeric metal chelates and their development are examined. The related research was performed for chelates with chain structure. This book is useful to researchers being active in synthesis and design of macromolecular metal chelates
The book is devoted to novel nanostructured materials and nanotechnology. A comprehensive analysis of the condensing methods of preparation of novel nanostructured materials is given. The methodology of power-consuming preparation of nanostructured materials is discussed, including thermolysis, photo- and radiolytic, electrochemical and mechanochemical methods. The peculiarities of chemical transformations in organic and inorganic matrices are compared. Special attention is given to kinetics and mechanism of the formation of nanocomposites. The structure and properties of such nanostructured materials are analysed.
This interdisciplinary approach to the topic brings together reviews of the physics, chemistry, fabrication and application of magnetic nanoparticles and nanostructures within a single cover. With its discussion of the basics as well as the most recent developments, and featuring many examples of practical applications, the result is both a clear and concise introduction to the topic for beginners and a guide to relevant comprehensive physical phenomena and essential technological applications for experienced researchers.
Data on the synthesis and physicochemical studies of salts of mono- or dibasic unsaturated carboxylic acids and macromolecular metal carboxylates are generalised and described systematically in this monograph. The structures and properties of the COO group in various compounds and characteristic features of the structures of carboxylate are analysed. The main routes and kinetics of polymerisation transformations of unsaturated metal carboxylates are considered. The attention is focused on the effect of the metal ion on the monomer reactivity and the polymer morphology and structure. The possibility of stereochemical control of radical polymerisation of unsaturated metal carboxylates is demonstrated. The electronic, magnetic, optical, absorption and thermal properties of metal (co)polymers and nanocomposites and their main applications are also considered.
The 9th IUPAC International Symposium on Macromolecule–Metal Complexes (MMC–9) was held at the Polytechnic University in Brooklyn, NY ; August 19–23,2001. The topics addressed included: – macromolecule–metal complexes in "green Chemistry" – polyelectrolytes and polymer batteries – electronic, magnetic and optical properties of macromolecule–metal complexes – biorelated complexes – physical properties The role of metal ions, complexes and clusters inmacromolecular systems was discussed wherein the polymer systems were either natural or synthetic (organic or inorganic). Plenary and selected lectures are presented in this volume of Macromolecular Symposia. This text is intended for scientists, engineers and other technical personnel who seek a current assessment of the rapidly growing field of macromolecule–metal complexes.
This series provides a useful, applications-oriented forum for the next generation of macromolecules and materials. The sixth volume in this series provides useful descriptions of the transition metals and their applications, edited by high-quality team of macromolecular experts from around the world.
The 10th IUPAC International Symposium on Macromolecule-Metal Complexes (MMC-10) took place from May 18-23, 2003 in a boat traveling from Moscow along the Volga river. Areas presented included several basic and applied topics in the field of advanced MMC. Presented were the latest results in the fundamental aspects of: Macromolecule metal complexes (synthesis, structure, properties) Electron and photonic transfer Catalysis and separation processes Supramolecules Dendrimers Molecular recognition Metal ion conductive polymers Environmental application of MMC were widely discussed.
Phase morphology in multicomponent polymer-based systems represents the main physical characteristic that allows for control of the material design and implicitly the development of new plastics. Emphasizing properties of these promising new materials in both solution and solid phase, this book describes the preparation, processing, properties, and practical implications of advanced multiphase systems from macro to nanoscales. It covers a wide range of systems including copolymers, polymer blends, polymer composites, gels, interpenetrating polymers, and layered polymer/metal structures, describing aspects of polymer science, engineering, and technology. The book analyzes experimental and the...
Polymers in Organic Electronics: Polymer Selection for Electronic, Mechatronic, and Optoelectronic Systems provides readers with vital data, guidelines, and techniques for optimally designing organic electronic systems using novel polymers. The book classifies polymer families, types, complexes, composites, nanocomposites, compounds, and small molecules while also providing an introduction to the fundamental principles of polymers and electronics. Features information on concepts and optimized types of electronics and a classification system of electronic polymers, including piezoelectric and pyroelectric, optoelectronic, mechatronic, organic electronic complexes, and more. The book is desig...