You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the an...
Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in Tübingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.
These proceedings feature some of the latest important results about machine learning based on methods originated in Computer Science and Statistics. In addition to papers discussing theoretical analysis of the performance of procedures for classification and prediction, the papers in this book cover novel versions of Support Vector Machines (SVM), Principal Component methods, Lasso prediction models, and Boosting and Clustering. Also included are applications such as multi-level spatial models for diagnosis of eye disease, hyperclique methods for identifying protein interactions, robust SVM models for detection of fraudulent banking transactions, etc. This book should be of interest to researchers who want to learn about the various new directions that the field is taking, to graduate students who want to find a useful and exciting topic for their research or learn the latest techniques for conducting comparative studies, and to engineers and scientists who want to see examples of how to modify the basic high-dimensional methods to apply to real world applications with special conditions and constraints.
This book presents revised reviewed versions of lectures given during the Machine Learning Summer School held in Canberra, Australia, in February 2002. The lectures address the following key topics in algorithmic learning: statistical learning theory, kernel methods, boosting, reinforcement learning, theory learning, association rule learning, and learning linear classifier systems. Thus, the book is well balanced between classical topics and new approaches in machine learning. Advanced students and lecturers will find this book a coherent in-depth overview of this exciting area, while researchers will use this book as a valuable source of reference.
The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification--that is, a scale parameter--rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba.
This book constitutes the refereed proceedings of the 17th International Conference on Algorithmic Learning Theory, ALT 2006, held in Barcelona, Spain in October 2006, colocated with the 9th International Conference on Discovery Science, DS 2006. The 24 revised full papers presented together with the abstracts of five invited papers were carefully reviewed and selected from 53 submissions. The papers are dedicated to the theoretical foundations of machine learning.
This book is based on the papers presented at the International Conference on Arti?cial Neural Networks, ICANN 2001, from August 21–25, 2001 at the - enna University of Technology, Austria. The conference is organized by the A- trian Research Institute for Arti?cal Intelligence in cooperation with the Pattern Recognition and Image Processing Group and the Center for Computational - telligence at the Vienna University of Technology. The ICANN conferences were initiated in 1991 and have become the major European meeting in the ?eld of neural networks. From about 300 submitted papers, the program committee selected 171 for publication. Each paper has been reviewed by three program committee m...
This book constitutes the refereed proceedings of the 15th Annual Conference on Computational Learning Theory, COLT 2002, held in Sydney, Australia, in July 2002. The 26 revised full papers presented were carefully reviewed and selected from 55 submissions. The papers are organized in topical sections on statistical learning theory, online learning, inductive inference, PAC learning, boosting, and other learning paradigms.
This book constitutes the refereed proceedings of the 17th European Conference on Machine Learning, ECML 2006, held, jointly with PKDD 2006. The book presents 46 revised full papers and 36 revised short papers together with abstracts of 5 invited talks, carefully reviewed and selected from 564 papers submitted. The papers present a wealth of new results in the area and address all current issues in machine learning.
This book constitutes the refereed proceedings of the 17th Annual Conference on Learning Theory, COLT 2004, held in Banff, Canada in July 2004. The 46 revised full papers presented were carefully reviewed and selected from a total of 113 submissions. The papers are organized in topical sections on economics and game theory, online learning, inductive inference, probabilistic models, Boolean function learning, empirical processes, MDL, generalisation, clustering and distributed learning, boosting, kernels and probabilities, kernels and kernel matrices, and open problems.