You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The present book offers an essential but accessible introduction to the discoveries first made in the 1990s that the doubling condition is superfluous for most results for function spaces and the boundedness of operators. It shows the methods behind these discoveries, their consequences and some of their applications. It also provides detailed and comprehensive arguments, many typical and easy-to-follow examples, and interesting unsolved problems. The theory of the Hardy space is a fundamental tool for Fourier analysis, with applications for and connections to complex analysis, partial differential equations, functional analysis and geometrical analysis. It also extends to settings where the doubling condition of the underlying measures may fail.
This book introduces some important progress in the theory of CalderonOCoZygmund singular integrals, oscillatory singular integrals, and LittlewoodOCoPaley theory over the last decade. It includes some important research results by the authors and their cooperators, such as singular integrals with rough kernels on Block spaces and Hardy spaces, the criterion on boundedness of oscillatory singular integrals, and boundedness of the rough Marcinkiewicz integrals. These results have frequently been cited in many published papers."
Wavelet analysis has been one of the major research directions in science in the last decade. More and more mathematicians and scientists join this exciting research area. Certainly, wavelet analysis has had a great impact in areas such as approximation theory, harmonic analysis, and scientific computation. More importantly, wavelet analysis has shown great potential in applications to information technology such as signal processing, image processing, and computer graphics. Chinahas played a significant role in this development of wavelet analysis as evidenced by many fruitful theoretical results and practical applications. A conference on wavelet analysis and its applications was organized...
None
None
The authors establish square function estimates for integral operators on uniformly rectifiable sets by proving a local theorem and applying it to show that such estimates are stable under the so-called big pieces functor. More generally, they consider integral operators associated with Ahlfors-David regular sets of arbitrary codimension in ambient quasi-metric spaces. The local theorem is then used to establish an inductive scheme in which square function estimates on so-called big pieces of an Ahlfors-David regular set are proved to be sufficient for square function estimates to hold on the entire set. Extrapolation results for and Hardy space versions of these estimates are also established. Moreover, the authors prove square function estimates for integral operators associated with variable coefficient kernels, including the Schwartz kernels of pseudodifferential operators acting between vector bundles on subdomains with uniformly rectifiable boundaries on manifolds.