You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is the second volume in the NATO ASI series dealing with the topic of hydrogen in solids. The first (V. B76, Metal Hydrides) appeared five years ago and focussed primarily on crystalline phases of hydrided metallic systems. In the intervening period, the amorphous solid state has become an area of intense research activity, encompassing both metallic and non-metallic, e.g. semiconducting, systems. At the same time the problem of storage of hydrogen, which motivated the first ASI, continues to be important. In the case of metallic systems, there were early indications that metallic glasses and disordered alloys may be more corrosion resistant, less susceptible to embrittlement by hydrogen and have a higher hydrogen mobility than ordered metals or intermetallics. All of these properties are desirable for hydrogen storage. Subsequent research has shown that thermodynamic instability is a severe problem in many amorphous metal hydrides. The present ASI has provided an appropriate forum to focus on these issues.
In the last five years, the study of metal hydrides has ex panded enormously due to the potential technological importance of this class of materials in hydrogen based energy conversion schemes. The scope of this activity has been worldwide among the industrially advanced nations. There has been a consensus among researchers in both fundamental and applied areas that a more basic understanding of the properties of metal/hydrogen syster;,s is required in order to provide a rational basis for the selection of materials for specific applications. The current worldwide need for and interest in research in metal hydrides indicated the timeliness of an Advanced Study Insti tute to provide an in-de...
The Ninth Course of the International School of Cosmology and Gravita tion of the Ettore Majorana Centre for Scientific Culture is concerned with "Topological Properties and Global Structure of Space-Time." We consider this topic to possess great importance. Our choice has also been influenced by the fact that there are many quest ions as yet unre solved. Standard general relativity describes space-time as a four-dimensional pseudo-Riemannian manifold, but it does not prescribe its large-scale structure. Inorderto attempt answers to some topological questions, such as whether our universe is open or closed, whether it is orientable, and whether it is complete or possesses singularities, vari...
The 1985 Summer School on Nuclear Dynamics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the sixth in a series that started in 1963. This year's topic has been nuclear dynamics rather than nuclear structure as in the foregoing years. This change reflects a shift in focus to nuclear processes at higher energy, or, more generally, to nuclear processes under less traditional circumstances. For many years nuclear physics has been restricted to the domain of the ground state and excited states of low energy. The boundaries between nuclear physics and high-energy physics are rapidly disappearing, however, and the future will presumably show that the two field...
The sixth Ettore Majorana International School of Mathematical Physics was held at the Centro della Cultura Scientifica Erice, Sicily, 1-14 July 1985. The present volume collects lecture notes on the ses sion which was devoted to Fundamental Problems of Gauge Field Theory. The School was a NATO Advanced Study Institute sponsored by the Italian Ministry of Public Education, the Italian Ministry of Scientific and Technological Research and the Regional Sicilian Government. As a result of the experimental and theoretical developments of the last two decades, gauge field theory, in one form or another, now pro vides the standard language for the description of Nature; QCD and the standard model ...
The NATO Advanced Study Institute "New Vistas in Electro-Nuclear Physics" was held in Banff, Alberta, Canada from August 22 to September 4, 1985. This volume con tains the lecture notes from that Institute. The idea to organize this Institute coincided with the award of funding for a pulse stretcher ring at the University of Saskatchewan's Linear Accelerator Laboratory. This together with the high level of interest in electron accelerators worldwide convinced us that it was an appropriate time to discuss the physics to be learned with such machines. In particular that physics which requires high energy and/or high duty cycle accelerators for its extraction was intended to be the focus of the Institute. Thus the scope of the lec tures was wide, with topics ranging from the structure of the trinucleons to quark models of nucleons, QCD, and QHD. The theme however was that we are just trying to under stand the nucleus and that the electromagnetic probe can serve as a powerful tool in such a quest.
This volume presents the contributions to the international workshop entitled "Lattice Gauge Theory - a Challenge in Large Scale Computing" that was held in Wuppertal from November 4 to 7, 1985. This meeting was the third in a series of European workshops in this rapidly developing field. The meeting intended to bring together both active university research ers in this field and scientists from industry and research centers who pursue large scale computing projects on problems within lattice gauge theory. These problems are extremely demanding from the point of view of both machine hardware and algorithms, for the verification of the continuum fields theories like Quantum Chromodynamics in ...
An Institute like ours cannot help but lend credence to the notion of the late Derek J. de Solla Price of Yale University that "the scientific revolution was largely the improvement, invention and use of a series of instruments . . . . that expanded the reach of science in innumerable directions". Most of science today and in years gone by depends on the experimental observation of struc ture on the small scale with microscopes, and on the large scale with telescopes. The first instruments to expand the observational range of the human eye were simple optical systems, designed in the case of microscopes and telescopes to magnify the image. The big breakthrough in the 17th century was not whe...
Vols. for 1975- include publications cataloged by the Research Libraries of the New York Public Library with additional entries from the Library of Congress MARC tapes.