You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is a complete revision of a classic, seminal, and authoritative text that has been the model for most books on the topic written since 1970. It explores the building of stochastic (statistical) models for time series and their use in important areas of application -forecasting, model specification, estimation, and checking, transfer function modeling of dynamic relationships, modeling the effects of intervention events, and process control.
Introduction and summary; Stochastic models and their forecasting; The autocorrelation function and spectrum; Linear stationary models; Linear nonstationary models; Forecasting; Stochastic model building; Model identification; Model estimation; Model diagnostic checking; Seasonal models; Transfer function models; Identification fitting, and checking of transfer function models.
Explains the concepts and use of univariate Box-Jenkins/ARIMA analysis and forecasting through 15 case studies. Cases show how to build good ARIMA models in a step-by-step manner using real data. Also includes examples of model misspecification. Provides guidance to alternative models and discusses reasons for choosing one over another.
This book presents modern developments in time series econometrics that are applied to macroeconomic and financial time series. It contains the most important approaches to analyze time series which may be stationary or nonstationary.
This book presents an accessible approach to understanding time series models and their applications. The ideas and methods are illustrated with both real and simulated data sets. A unique feature of this edition is its integration with the R computing environment.
Praise for the First Edition "...[t]he book is great for readers who need to apply the methods and models presented but have little background in mathematics and statistics." -MAA Reviews Thoroughly updated throughout, Introduction to Time Series Analysis and Forecasting, Second Edition presents the underlying theories of time series analysis that are needed to analyze time-oriented data and construct real-world short- to medium-term statistical forecasts. Authored by highly-experienced academics and professionals in engineering statistics, the Second Edition features discussions on both popular and modern time series methodologies as well as an introduction to Bayesian methods in forecastin...