You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This straightforward text makes the complicated but powerful methods of non-linear control accessible to process engineers. Not only does it cover the necessary mathematics, but it consistently refers to the widely-known finite-dimensional linear time-invariant continuous case as a basis for extension to the nonlinear situation.
This volume contains the extended version of selected talks given at the international research workshop "Coping with Complexity: Model Reduction and Data Analysis", Ambleside, UK, August 31 – September 4, 2009. The book is deliberately broad in scope and aims at promoting new ideas and methodological perspectives. The topics of the chapters range from theoretical analysis of complex and multiscale mathematical models to applications in e.g., fluid dynamics and chemical kinetics.
Intelligent control is a rapidly developing, complex and challenging field with great practical importance and potential. Because of the rapidly developing and interdisciplinary nature of the subject, there are only a few edited volumes consisting of research papers on intelligent control systems but little is known and published about the fundamentals and the general know-how in designing, implementing and operating intelligent control systems. Intelligent control system emerged from artificial intelligence and computer controlled systems as an interdisciplinary field. Therefore the book summarizes the fundamentals of knowledge representation, reasoning, expert systems and real-time control systems and then discusses the design, implementation verification and operation of real-time expert systems using G2 as an example. Special tools and techniques applied in intelligent control are also described including qualitative modelling, Petri nets and fuzzy controllers. The material is illlustrated with simple examples taken from the field of intelligent process control.
Delay differential and difference equations serve as models for a range of processes in biology, physics, engineering and control theory. In this volume, the participants of the International Conference on Delay Differential and Difference Equations and Applications, Balatonfüred, Hungary, July 15-19, 2013 present recent research in this quickly-evolving field. The papers relate to the existence, asymptotic and oscillatory properties of the solutions; stability theory; numerical approximations; and applications to real world phenomena using deterministic and stochastic discrete and continuous dynamical systems.
Analysis and Control of Polynomial Dynamic Models with Biological Applications synthesizes three mathematical background areas (graphs, matrices and optimization) to solve problems in the biological sciences (in particular, dynamic analysis and controller design of QP and polynomial systems arising from predator-prey and biochemical models). The book puts a significant emphasis on applications, focusing on quasi-polynomial (QP, or generalized Lotka-Volterra) and kinetic systems (also called biochemical reaction networks or simply CRNs) since they are universal descriptors for smooth nonlinear systems and can represent all important dynamical phenomena that are present in biological (and also in general) dynamical systems. - Describes and illustrates the relationship between the dynamical, algebraic and structural features of the quasi-polynomial (QP) and kinetic models - Shows the applicability of kinetic and QP representation in biological modeling and control through examples and case studies - Emphasizes the importance and applicability of quantitative models in understanding and influencing natural phenomena
None
None