You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This 1998 book discusses how neurons and glial cells interact with each other to influence behaviour.
Astrocytes were the original neuroglia that Ramón y Cajal visualized in 1913 using a gold sublimate stain. This stain targeted intermediate filaments that we now know consist mainly of glial fibrillary acidic protein, a protein used today as an astrocytic marker. Cajal described the morphological diversity of these cells with some ast- cytes surrounding neurons, while the others are intimately associated with vasculature. We start the book by discussing the heterogeneity of astrocytes using contemporary tools and by calling into question the assumption by classical neuroscience that neurons and glia are derived from distinct pools of progenitor cells. Astrocytes have long been neglected as ...
DC-potential changes, comprising fast fluctuations and slow shifts, rep resent objective concomitants of neuronal processes in the brain. They can be recorded not only in animals, but also in humans under various conditions. As far as slow brain potentials are concerned, exciting results have been detected with respect to their correlation to psychophysiolog ical events. Although a large amount of data has been accumulated by psychophysiologists, neurophysiologists, and other scientists involved, the neurophysiological basis of these field potentials is still not clear, and remains controversial. Scientists from European countries participated in an interdisciplinary symposium in the summer ...
Glial Neuronal Signaling fills a need for a monograph/textbook to be used in advanced courses or graduate seminars aimed at exploring glial-neuronal interactions. Even experts in the field will find useful the authoritative summaries of evidence on ion channels and transporters in glia, genes involved in signaling during development, metabolic cross talk and cooperation between astrocytes and neurons, to mention but a few of the timely summaries of a wide range of glial-neuronal interactions. The chapters are written by the top researchers in the field of glial-neuronal signaling, and cover the most current advances in this field. The book will also be of value to the workers in the field of cell biology in general. When we think about the brain we usually think about neurons. Although there are 100 billion neurons in mammalian brain, these cells do not constitute a majority. Quite the contrary, glial cells and other non-neuronal cells are 10-50 times more numerous than neurons. This book is meant to integrate the emerging body of information that has been accumulating, revealing the interactive nature of the brain's two major neural cell types, neurons and glia, in brain function.
Glial Physiology and Pathophysiology provides a comprehensive, advanced text on the biology and pathology of glial cells. Coverae includes: the morphology and interrelationships between glial cells and neurones in different parts of the nervous systems the cellular physiology of the different kinds of glial cells the mechanisms of intra- and inter-cellular signalling in glial networks the mechanisms of glial-neuronal communications the role of glial cells in synaptic plasticity, neuronal survival and development of nervous system the cellular and molecular mechanisms of metabolic neuronal-glial interactions the role of glia in nervous system pathology, including pathology of glial cells and ...
Edited by the 1991 winners of the Nobel Prize in Physiology or Medicine, this Second Edition includes new chapters covering such applications as capacitance measurements; single-cell PCR measurements; whole-cell recording from brain slices in combination with imaging techniques; atomic force microscopy of cells and membranes attached to glass pipettes; and patch clamping.
Gene expression is an active ongoing process that maintains a functional CNS, as proteins are being made on a continual basis. Processes such as learning and memory, nerve cell repair and regeneration and its response to stress are critically dependent on gene expression. This volume highlights the role of gene expression in normal CNS function, and presents many research methods at the cutting edge of neuroscience, which will provide insight into therapeutic approaches through which the control of gene expression may be used in the treatment of many nervous system diseases.
This volume brings together current research on the idiopathic and symptomatic epilepsies from all relevant basic science and clinical disciplines and identities promising areas of future investigation. Coverage represents advancing areas of biology that are being applied to epilepsy research, including developmental neurobiology, molecular biology and genetics, cellular and systems neurosciences, neurochemical pharmacology, and brain imaging. The book is organized into sections on neural development, genes, and the epilepsies; the idiopathic epilepsies; symptomatic lesional epilepsies; and frontiers in brain imaging and therapeutics. An editors' introduction to each section provides an overview of the fields of biology covered.
A comprehensive review of recent advances in the most severe form of epilepsy, focusing on two areas in which progress has been most rapid: basic mechanisms and treatment. Interest in status epilepticus--the most extreme form of epilepsy, involving continuous seizures--has surged in the last 20 years. Since 1979 there have been over 4,000 publications on the subject, including more than 1,700 in the last five years. No other text provides such a comprehensive review of the recent advances in the field of status epilepticus. The book focuses on the two areas in which progress has been most rapid: basic mechanisms and treatment. There is now a greater understanding of the mechanisms and compli...
Astrocytes play diverse roles in central nervous system (CNS) function and dysfunction, and the connections that the astrocyte makes with other cells of the brain are essential for a variety of important neural tasks. Bringing together contributions from international experts at the top of their field, Astrocytes: Wiring the Brain emphasizes cellul