You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
These proceedings discuss the quantal system with many particles mainly from the theoretical point of view. The topics discussed include the relativistic nuclear many-body problem, perspective in hadron structure, mean-field and semiclassical methods, thermal theories, symmetries and group theoretical methods, and density functional theories.
Covering the latest research in alloy physics together with the underlying basic principles, this comprehensive book provides a sound understanding of the structural changes in metals and alloys -- ranging from plastic deformation, deformation dynamics and ordering kinetics right up to atom jump processes, first principle calculations and simulation techniques. Alongside fundamental topics, such as crystal defects, phase transformations and statistical thermodynamics, the team of international authors treats such hot areas as nano-size effects, interfaces, and spintronics, as well as technical applications of modern alloys, like data storage and recording, and the possibilities offered by materials design.
Historical papers are prefixed to several issues.
This volume gives an overview of the recent representative developments in relativistic and non-relativistic quantum theory, which are related to the application of various mathematical notions of various symmetries. These notions are centered upon groups, algebras and their generalizations, and are applied in interaction with topology, differential geometry, functional analysis and related fields. The emphasis is on results in the following areas: foundation of quantum physics, quantization methods, nonlinear quantum mechanics, algebraic quantum field theory, gauge and string theories, discrete spaces, quantum groups and generalized symmetries.
Although perturbative QCD has progressed much in the last few years, the notion of diquarks is still useful and vital and many short cuts induced by diquarks can still be very efficient for simulating nonperturbative effects in the intermediate energy region (from a few GeV to some 10-20 GeV), where a whole new generation of machines is being planned and will, hopefully, become operative in the near future.
This book incorporates 3 modern aspects of mathematical physics: the jet methods in differential geometry, Lagrangian formalism on jet manifolds and the multimomentum approach to Hamiltonian formalism. Several contemporary field models are investigated in detail.This is not a book on differential geometry. However, modern concepts of differential geometry such as jet manifolds and connections are used throughout the book. Quadratic Lagrangians and Hamiltonians are studied at the general level including a treatment of Hamiltonian formalism on composite fiber manifolds. The book presents new geometric methods and results in field theory.
The International Symposium "Fatigue under Thermal and Mechanical Loading", held at Petten (The Netherlands) on May 22-24, 1995, was jointly organized by the Institute for Advanced Materials of The Joint Research Centre, E. C. , and by the Societe Fran~se de Metallurgie et de Materiaux. The fast heating and cooling cycles experienced by many high temperature components cause thermally induced stresses, which often operate in combination with mechanical loads. The resulting thermal / mechanical fatigue cycle leads to material degradation mechanisms and failure modes typical of service cycles. The growing awareness that the synergism between the combined thermal and mechanical loads can not be...
This volume contains a selection of peer-reviewed papers presented at the International Conference on Temperature-Fatigue Interaction, held in Paris, May 29-31, 2001, organised by the Fatigue Committee of the Societé Française de Métallurgie et de Matériaux (SF2M), under the auspices of the European Structural Integrity Society. The conference disseminated recent research results and promoting the interaction and collaboration amongst materials scientists, mechanical engineers and design engineers. Many engineering components and structures used in the automotive, aerospace, power generation and many other industries experience cyclic mechanical loads at high temperature or temperature t...
Magnetic and superconducting materials pervade every avenue of the technological world – from microelectronics and mass-data storage to medicine and heavy engineering. Both areas have experienced a recent revitalisation of interest due to the discovery of new materials, and the re-evaluation of a wide range of basic mechanisms and phenomena.This Concise Encyclopedia draws its material from the award-winning Encyclopedia of Materials and Engineering, and includes updates and revisions not available in the original set -- making it the ideal reference companion for materials scientists and engineers with an interest in magnetic and superconducting materials. - Contains in excess of 130 articles, taken from the award-winning Encyclopedia of Materials: Science and Technology, including ScienceDirect updates not available in the original set - Each article discusses one aspect of magnetic and superconducting materials and includes photographs, line drawings and tables to aid the understanding of the topic at hand - Cross-referencing guides readers to articles covering subjects of related interest
This monograph draws on two traditions: the algebraic formulation of quantum mechanics as well as quantum field theory, and the geometric theory of classical mechanics. These are combined in a unified treatment of the theory of Poisson algebras of observables and pure state spaces with a transition probability, which leads on to a discussion of the theory of quantization and the classical limit from this perspective. A prototype of quantization comes from the analogy between the C*- algebra of a Lie groupoid and the Poisson algebra of the corresponding Lie algebroid. The parallel between reduction of symplectic manifolds in classical mechanics and induced representations of groups and C*- algebras in quantum mechanics plays an equally important role. Examples from physics include constrained quantization, curved spaces, magnetic monopoles, gauge theories, massless particles, and $theta$- vacua. Accessible to mathematicians with some prior knowledge of classical and quantum mechanics, and to mathematical physicists and theoretical physicists with some background in functional analysis.