You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
Based on talks from the 2017 and 2018 Combinatorial and Additive Number Theory (CANT) workshops at the City University of New York, these proceedings offer 17 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003, the workshop series surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Topics featured in this volume include sumsets, partitions, convex polytopes and discrete geometry, Ramsey theory, commutative algebra and discrete geometry, and applications of logic and nonstandard analysis to number theory. Each contribution is dedicated to a specific topic that reflects the latest results by experts in the field. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.
Provides the reader with working knowledge of Mathematica and key aspects of Mathematica's numerical capabilities needed to deal with virtually any "real life" problem Clear organization, complete topic coverage, and an accessible writing style for both novices and experts Website for book with additional materials: http://www.MathematicaGuideBooks.org Accompanying DVD containing all materials as an electronic book with complete, executable Mathematica 5.1 compatible code and programs, rendered color graphics, and animations
Includes the decisions of the Supreme Courts of Missouri, Arkansas, Tennessee, and Texas, and Court of Appeals of Kentucky; Aug./Dec. 1886-May/Aug. 1892, Court of Appeals of Texas; Aug. 1892/Feb. 1893-Jan./Feb. 1928, Courts of Civil and Criminal Appeals of Texas; Apr./June 1896-Aug./Nov. 1907, Court of Appeals of Indian Territory; May/June 1927-Jan./Feb. 1928, Courts of Appeals of Missouri and Commission of Appeals of Texas.
This book is almost entirely concerned with stream ciphers, concentrating on a particular mathematical model for such ciphers which are called additive natural stream ciphers. These ciphers use a natural sequence generator to produce a periodic keystream. Full definitions of these concepts are given in Chapter 2.This book focuses on keystream sequences which can be analysed using number theory. It turns out that a great deal of information can be deducted about the cryptographic properties of many classes of sequences by applying the terminology and theorems of number theory. These connections can be explicitly made by describing three kinds of bridges between stream ciphering problems and number theory problems. A detailed summary of these ideas is given in the introductory Chapter 1.Many results in the book are new, and over seventy percent of these results described in this book are based on recent research results.