You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The proceedings of the 2005 les Houches summer school on Mathematical Statistical Physics give and broad and clear overview on this fast developing area of interest to both physicists and mathematicians. - Introduction to a field of math with many interdisciplinary connections in physics, biology, and computer science - Roadmap to the next decade of mathematical statistical mechanics - Volume for reference years to come
This volume contains the Proceedings of the Special Seminar on: FRAGTALS held from October 9-15, 1988 at the Ettore Majorana Centre for Scientific Culture, Erice (Trapani), Italy. The concepts of self-similarity and scale invariance have arisen independently in several areas. One is the study of critical properites of phase transitions; another is fractal geometry, which involves the concept of (non-integer) fractal dimension. These two areas have now come together, and their methods have extended to various fields of physics. The purpose of this Seminar was to provide an overview of the recent developments in the field. Most of the contributions are theoretical, but some experimental work i...
This is an in-depth study of not just about Tan Kah-kee, but also the making of a legend through his deeds, self-sacrifices, fortitude and foresight. This revised edition sheds new light on his political agonies in Mao's China over campaigns against capitalists and intellectuals.
The problem of counting the number of self-avoiding polygons on a square grid, - therbytheirperimeterortheirenclosedarea,is aproblemthatis soeasytostate that, at ?rst sight, it seems surprising that it hasn’t been solved. It is however perhaps the simplest member of a large class of such problems that have resisted all attempts at their exact solution. These are all problems that are easy to state and look as if they should be solvable. They include percolation, in its various forms, the Ising model of ferromagnetism, polyomino enumeration, Potts models and many others. These models are of intrinsic interest to mathematicians and mathematical physicists, but can also be applied to many oth...
For many years, the physics of strongly correlated systems was considered a theorists' playground, right at the border with pure mathematics, where physicists from the `real world' did not venture. The time has come, however, when healthy physics cannot exist without these techniques and results. Lectures on selected topics in the theory of strongly correlated systems are here presented by the leading experts in the field. Topics covered include a use of the form factor approach in low-dimensional systems, applications of quantum field theory to disorder, and dynamical mean field theory. The main divisions of the book deal with: I) Quantum Critical Points; (II) Strongly Correlated One-Dimensional Systems; (III) Strong Correlations and Disorder; and (IV) Dynamical Mean Field Theory.
When close to a continuous phase transition, many physical systems can usefully be mapped to ensembles of fluctuating loops, which might represent for example polymer rings, or line defects in a lattice magnet, or worldlines of quantum particles. 'Loop models' provide a unifying geometric language for problems of this kind. This thesis aims to extend this language in two directions. The first part of the thesis tackles ensembles of loops in three dimensions, and relates them to the statistical properties of line defects in disordered media and to critical phenomena in two-dimensional quantum magnets. The second part concerns two-dimensional loop models that lie outside the standard paradigms: new types of critical point are found, and new results given for the universal properties of polymer collapse transitions in two dimensions. All of these problems are shown to be related to sigma models on complex or real projective space, CP^{n−1} or RP^{n−1} -- in some cases in a 'replica' limit -- and this thesis is also an in-depth investigation of critical behaviour in these field theories.
Fractals and disordered systems have recently become the focus of intense interest in research. This book discusses in great detail the effects of disorder on mesoscopic scales (fractures, aggregates, colloids, surfaces and interfaces, glasses, and polymers) and presents tools to describe them in mathematical language. A substantial part is devoted to the development of scaling theories based on fractal concepts. In 10 chapters written by leading experts in the field, including E. Stanley and B. Mandelbrot, the reader is introduced to basic concepts and techniques in disordered systems and is lead to the forefront of current research. In each chapter the connection between theory and experiment is emphasized, and a special chapter entitled "Fractals and Experiments" presents experimental studies of fractal systems in the laboratory. The book is written pedagogically. It can be used as a textbook for graduate students, by university teachers to prepare courses and seminars, and by active scientists who want to become familiar with a fascinating new field.
7 Les Houches Number theory, or arithmetic, sometimes referred to as the queen of mathematics, is often considered as the purest branch of mathematics. It also has the false repu tation of being without any application to other areas of knowledge. Nevertheless, throughout their history, physical and natural sciences have experienced numerous unexpected relationships to number theory. The book entitled Number Theory in Science and Communication, by M.R. Schroeder (Springer Series in Information Sciences, Vol. 7, 1984) provides plenty of examples of cross-fertilization between number theory and a large variety of scientific topics. The most recent developments of theoretical physics have invol...
Enthusiasm for research on the quantum Hall effect (QHE) is unbounded. The QHE is one of the most fascinating and beautiful phenomena in all branches of physics. Tremendous theoretical and experimental developments are still being made in this sphere. Composite bosons, composite fermions and anyons were among distinguishing ideas in the original edition.In the 2nd edition, fantastic phenomena associated with the interlayer phase coherence in the bilayer system were extensively described. The microscopic theory of the QHE was formulated based on the noncommutative geometry. Furthermore, the unconventional QHE in graphene was reviewed, where the electron dynamics can be treated as relativistic...