Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

The Physics of Chaos in Hamiltonian Systems
  • Language: en
  • Pages: 337

The Physics of Chaos in Hamiltonian Systems

This book aims to familiarize the reader with the essential properties of the chaotic dynamics of Hamiltonian systems by avoiding specialized mathematical tools, thus making it easily accessible to a broader audience of researchers and students. Unique material on the most intriguing and fascinating topics of unsolved and current problems in contemporary chaos theory is presented. The coverage includes: separatrix chaos; properties and a description of systems with non-ergodic dynamics; the distribution of Poincar‚ recurrences and their role in transport theory; dynamical models of the Maxwell's Demon, the occurrence of persistent fluctuations, and a detailed discussion of their role in the...

Introduction to Hamiltonian Dynamical Systems and the N-Body Problem
  • Language: en
  • Pages: 304

Introduction to Hamiltonian Dynamical Systems and the N-Body Problem

The theory of Hamiltonian systems is a vast subject which can be studied from many different viewpoints. This book develops the basic theory of Hamiltonian differential equations from a dynamical systems point of view. That is, the solutions of the differential equations are thought of as curves in a phase space and it is the geometry of these curves that is the important object of study. The analytic underpinnings of the subject are developed in detail. The last chapter on twist maps has a more geometric flavor. It was written by Glen R. Hall. The main example developed in the text is the classical N-body problem, i.e., the Hamiltonian system of differential equations which describe the motion of N point masses moving under the influence of their mutual gravitational attraction. Many of the general concepts are applied to this example. But this is not a book about the N-body problem for its own sake. The N-body problem is a subject in its own right which would require a sizable volume of its own. Very few of the special results which only apply to the N-body problem are given.

Lectures on Hamiltonian Systems
  • Language: en
  • Pages: 87

Lectures on Hamiltonian Systems

None

Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces
  • Language: en
  • Pages: 221

Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces

This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the first textbook on infinite-dimensional port-Hamiltonian systems. An abstract functional analytical approach is combined with the physical approach to Hamiltonian systems. This combined approach leads to easily verifiable conditions for well-posedness and stability. The book is accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Moreover, the theory is illustrated by many worked-out examples.

Classical and Quantum Dynamics of Constrained Hamiltonian Systems
  • Language: en
  • Pages: 317

Classical and Quantum Dynamics of Constrained Hamiltonian Systems

This book is an introduction to the field of constrained Hamiltonian systems and their quantization, a topic which is of central interest to theoretical physicists who wish to obtain a deeper understanding of the quantization of gauge theories, such as describing the fundamental interactions in nature. Beginning with the early work of Dirac, the book covers the main developments in the field up to more recent topics, such as the field-antifield formalism of Batalin and Vilkovisky, including a short discussion of how gauge anomalies may be incorporated into this formalism. The book is comprehensive and well-illustrated with examples, enables graduate students to follow the literature on this subject without much problems, and to perform research in this field.

Introduction to the Perturbation Theory of Hamiltonian Systems
  • Language: en
  • Pages: 221

Introduction to the Perturbation Theory of Hamiltonian Systems

This book is an extended version of lectures given by the ?rst author in 1995–1996 at the Department of Mechanics and Mathematics of Moscow State University. We believe that a major part of the book can be regarded as an additional material to the standard course of Hamiltonian mechanics. In comparison with the original Russian 1 version we have included new material, simpli?ed some proofs and corrected m- prints. Hamiltonian equations ?rst appeared in connection with problems of geometric optics and celestial mechanics. Later it became clear that these equations describe a large classof systemsin classical mechanics,physics,chemistry,and otherdomains. Hamiltonian systems and their discret...

Introduction to Hamiltonian Dynamical Systems and the N-Body Problem
  • Language: en
  • Pages: 404

Introduction to Hamiltonian Dynamical Systems and the N-Body Problem

Arising from a graduate course taught to math and engineering students, this text provides a systematic grounding in the theory of Hamiltonian systems, as well as introducing the theory of integrals and reduction. A number of other topics are covered too.

Random Perturbations of Hamiltonian Systems
  • Language: en
  • Pages: 82

Random Perturbations of Hamiltonian Systems

Random perturbations of Hamiltonian systems in Euclidean spaces lead to stochastic processes on graphs, and these graphs are defined by the Hamiltonian. In the case of white-noise type perturbations, the limiting process will be a diffusion process on the graph. Its characteristics are expressed through the Hamiltonian and the characteristics of the noise. Freidlin and Wentzell calculate the process on the graph under certain conditions and develop a technique which allows consideration of a number of asymptotic problems. The Dirichlet problem for corresponding elliptic equations with a small parameter are connected with boundary problems on the graph.

Hamiltonian Systems
  • Language: en
  • Pages: 378

Hamiltonian Systems

Dynamical systems that are amenable to formulation in terms of a Hamiltonian function or operator encompass a vast swath of fundamental cases in applied mathematics and physics. This carefully edited volume represents work carried out during the special program on Hamiltonian Systems at MSRI in the Fall of 2018. Topics covered include KAM theory, polygonal billiards, Arnold diffusion, quantum hydrodynamics, viscosity solutions of the Hamilton–Jacobi equation, surfaces of locally minimal flux, Denjoy subsystems and horseshoes, and relations to symplectic topology.

Hamiltonian Systems And Celestial Mechanics
  • Language: en
  • Pages: 218

Hamiltonian Systems And Celestial Mechanics

This volume puts together several important lectures on the Hamiltonian Systems and Celestial Mechanics to form a comprehensive and authoritative collection of works on the subject. The papers presented in this volume are an outgrowth of the lectures that took place during the 'International Symposium on Hamiltonian Systems and Celestial Mechanics', which was held at the CIMAT (Centro de Investigacion en Matematicas, Guanajuato, Mexico) from September 30 to October 4, 1991. In general, the lectures explored the subject of the Hamiltonian Dynamics and Celestial Mechanics and emphasized its relationship with several aspects of topology, mechanics and dynamical systems.