You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume offers the proceedings from the workshop held at the University of Milan (Italy) on groups of homotopy self-equivalences and related topics. The book comprises the articles relating current research on the group of homotopy self-equivalences, homotopy of function spaces, rational homotopy theory, classification of homotopy types, and equivariant homotopy theory. Mathematicians from many areas of the globe attended the workshops to discuss their research and to share ideas. Included are two specially-written articles, by J.W. Rutter, reviewing the work done in the area of homotopy self-equivalences since 1988. Included also is a bibliography of some 122 articles published since 1988 and a list of problems. This book is suitable for both advanced graduate students and researchers.
Focusing on fruitful exchanges between group theory and number theory, this book examines recent work in the characterization of extensions of number fields in terms of the decomposition of prime ideals. A key problem in this area is establishing the equality of Dedekind zeta functions of different number fields. This problem was solved for abelian extensions by class field theory, but was little studied in its general form until 1970. Recent progress has been based on important results in group theory, particularly the complete classification of all finite simple groups. This book provides an overview of this progress in algebraic number theory; it contains previously unpublished work as well as numerous results appearing in monograph form the first time.
The Second Waterloo Workshop on Computer Algebra was dedicated to the 70th birthday of combinatorics pioneer Georgy Egorychev. This book of formally-refereed papers submitted after that workshop covers topics closely related to Egorychev’s influential works.
Iwaniec (math, Syracuse U.) and Martin (math, U. of Auckland) explain recent developments in the geometry of mappings, related to functions or deformations between subsets of the Euclidean n-space Rn and more generally between manifolds or other geometric objects. Material on mappings intersects with aspects of differential geometry, topology, partial differential equations, harmonic analysis, and the calculus of variations. Chapters cover topics such as conformal mappings, stability of the Mobius group, Sobolev theory and function spaces, the Liouville theorem, even dimensions, Picard and Montel theorems in space, uniformly quasiregular mappings, and quasiconformal groups. c. Book News Inc.
None
This proceedings volume centers on new developments in rational homotopy and on their influence on algebra and algebraic topology. Most of the papers are original research papers dealing with rational homotopy and tame homotopy, cyclic homology, Moore conjectures on the exponents of the homotopy groups of a finite CW-c-complex and homology of loop spaces. Of particular interest for specialists are papers on construction of the minimal model in tame theory and computation of the Lusternik-Schnirelmann category by means articles on Moore conjectures, on tame homotopy and on the properties of Poincaré series of loop spaces.
This text provides an accessible account to the modern study of the geometry of four-manifolds. Prerequisites are a firm grounding in differential topology and geometry, as may be gained from the first year of a graduate course.
This book gives a general outlook on homotopy theory; fundamental concepts, such as homotopy groups and spectral sequences, are developed from a few axioms and are thus available in a broad variety of contexts. Many examples and applications in topology and algebra are discussed, including an introduction to rational homotopy theory in terms of both differential Lie algebras and De Rham algebras. The author describes powerful tools for homotopy classification problems, particularly for the classification of homotopy types and for the computation of the group homotopy equivalences. Applications and examples of such computations are given, including when the fundamental group is non-trivial. Moreover, the deep connection between the homotopy classification problems and the cohomology theory of small categories is demonstrated. The prerequisites of the book are few: elementary topology and algebra. Consequently, this account will be valuable for non-specialists and experts alike. It is an important supplement to the standard presentations of algebraic topology, homotopy theory, category theory and homological algebra.