Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

A History of Analysis
  • Language: en
  • Pages: 434

A History of Analysis

Analysis as an independent subject was created as part of the scientific revolution in the seventeenth century. Kepler, Galileo, Descartes, Fermat, Huygens, Newton, and Leibniz, to name but a few, contributed to its genesis. Since the end of the seventeenth century, the historical progress of mathematical analysis has displayed unique vitality and momentum. No other mathematical field has so profoundly influenced the development of modern scientific thinking. Describing this multidimensional historical development requires an in-depth discussion which includes a reconstruction of general trends and an examination of the specific problems. This volume is designed as a collective work of autho...

Proof and Proving in Mathematics Education
  • Language: en
  • Pages: 468

Proof and Proving in Mathematics Education

*THIS BOOK IS AVAILABLE AS OPEN ACCESS BOOK ON SPRINGERLINK* One of the most significant tasks facing mathematics educators is to understand the role of mathematical reasoning and proving in mathematics teaching, so that its presence in instruction can be enhanced. This challenge has been given even greater importance by the assignment to proof of a more prominent place in the mathematics curriculum at all levels. Along with this renewed emphasis, there has been an upsurge in research on the teaching and learning of proof at all grade levels, leading to a re-examination of the role of proof in the curriculum and of its relation to other forms of explanation, illustration and justification. T...

Explanation and Proof in Mathematics
  • Language: en
  • Pages: 289

Explanation and Proof in Mathematics

In the four decades since Imre Lakatos declared mathematics a "quasi-empirical science," increasing attention has been paid to the process of proof and argumentation in the field -- a development paralleled by the rise of computer technology and the mounting interest in the logical underpinnings of mathematics. Explanantion and Proof in Mathematics assembles perspectives from mathematics education and from the philosophy and history of mathematics to strengthen mutual awareness and share recent findings and advances in their interrelated fields. With examples ranging from the geometrists of the 17th century and ancient Chinese algorithms to cognitive psychology and current educational practi...

Axiomatics
  • Language: en
  • Pages: 300

Axiomatics

The first history of postwar mathematics, offering a new interpretation of the rise of abstraction and axiomatics in the twentieth century. Why did abstraction dominate American art, social science, and natural science in the mid-twentieth century? Why, despite opposition, did abstraction and theoretical knowledge flourish across a diverse set of intellectual pursuits during the Cold War? In recovering the centrality of abstraction across a range of modernist projects in the United States, Alma Steingart brings mathematics back into the conversation about midcentury American intellectual thought. The expansion of mathematics in the aftermath of World War II, she demonstrates, was characteriz...

Circles Disturbed
  • Language: en
  • Pages: 593

Circles Disturbed

Why narrative is essential to mathematics Circles Disturbed brings together important thinkers in mathematics, history, and philosophy to explore the relationship between mathematics and narrative. The book's title recalls the last words of the great Greek mathematician Archimedes before he was slain by a Roman soldier—"Don't disturb my circles"—words that seem to refer to two radically different concerns: that of the practical person living in the concrete world of reality, and that of the theoretician lost in a world of abstraction. Stories and theorems are, in a sense, the natural languages of these two worlds—stories representing the way we act and interact, and theorems giving us ...

Duel at Dawn
  • Language: en
  • Pages: 320

Duel at Dawn

In the fog of a Paris dawn in 1832, ƒvariste Galois, the 20-year-old founder of modern algebra, was shot and killed in a duel. That gunshot, suggests Amir Alexander, marked the end of one era in mathematics and the beginning of another. Arguing that not even the purest mathematics can be separated from its cultural background, Alexander shows how popular stories about mathematicians are really morality tales about their craft as it relates to the world. In the eighteenth century, Alexander says, mathematicians were idealized as child-like, eternally curious, and uniquely suited to reveal the hidden harmonies of the world. But in the nineteenth century, brilliant mathematicians like Galois b...

Transformation - A Fundamental Idea of Mathematics Education
  • Language: en
  • Pages: 417

Transformation - A Fundamental Idea of Mathematics Education

The diversity of research domains and theories in the field of mathematics education has been a permanent subject of discussions from the origins of the discipline up to the present. On the one hand the diversity is regarded as a resource for rich scientific development on the other hand it gives rise to the often repeated criticism of the discipline’s lack of focus and identity. As one way of focusing on core issues of the discipline the book seeks to open up a discussion about fundamental ideas in the field of mathematics education that permeate different research domains and perspectives. The book addresses transformation as one fundamental idea in mathematics education and examines it from different perspectives. Transformations are related to knowledge, related to signs and representations of mathematics, related to concepts and ideas, and related to instruments for the learning of mathematics. The book seeks to answer the following questions: What do we know about transformations in the different domains? What kinds of transformations are crucial? How is transformation in each case conceptualized?

From Hesiod to Saussure, from Hippocrates to Jevons
  • Language: en
  • Pages: 280

From Hesiod to Saussure, from Hippocrates to Jevons

This book is the third of a three-volume set introducing the history of scientific thought (including social and human science). The area covered in this volume is Western Europe during the 18th and 19th centuries. Combining general descriptions with extensive excerpts from original sources in English translation, it concentrates on ways of thinking and actual argumentation and not just on results and mistakes; questions of validity are primarily dealt with in the perspective of the time of the writing, not on that of the 21st century. The work is of great interest to historians of science and culture, students as well as seasoned workers – but also for amateurs willing to invest the necessary serious efforts.

On Their Own Terms
  • Language: en
  • Pages: 606

On Their Own Terms

In On Their Own Terms, Benjamin A. Elman offers a much-needed synthesis of early Chinese science during the Jesuit period (1600-1800) and the modern sciences as they evolved in China under Protestant influence (1840s-1900). By 1600 Europe was ahead of Asia in producing basic machines, such as clocks, levers, and pulleys, that would be necessary for the mechanization of agriculture and industry. In the seventeenth and eighteenth centuries, Elman shows, Europeans still sought from the Chinese their secrets of producing silk, fine textiles, and porcelain, as well as large-scale tea cultivation. Chinese literati borrowed in turn new algebraic notations of Hindu-Arabic origin, Tychonic cosmology, Euclidian geometry, and various computational advances. Since the middle of the nineteenth century, imperial reformers, early Republicans, Guomindang party cadres, and Chinese Communists have all prioritized science and technology. In this book, Elman gives a nuanced account of the ways in which native Chinese science evolved over four centuries, under the influence of both Jesuit and Protestant missionaries. In the end, he argues, the Chinese produced modern science on their own terms.

Pearls from a Lost City
  • Language: en
  • Pages: 247

Pearls from a Lost City

The fame of the Polish school at Lvov rests with the diverse and fundamental contributions of Polish mathematicians working there during the interwar years. In particular, despite material hardship and without a notable mathematical tradition, the school made major contributions to what is now called functional analysis. The results and names of Banach, Kac, Kuratowski, Mazur, Nikodym, Orlicz, Schauder, Sierpiński, Steinhaus, and Ulam, among others, now appear in all the standard textbooks. The vibrant joie de vivre and singular ambience of Lvov's once scintillating social scene are evocatively recaptured in personal recollections. The heyday of the famous Scottish Café--unquestionably the...