You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This open access book contains the research report of the Collaborative Research Center “Micro Cold Forming” (SFB 747) of the University of Bremen, Germany. The topical research focus lies on new methods and processes for a mastered mass production of micro parts which are smaller than 1mm (by forming in batch size higher than one million). The target audience primarily comprises research experts and practitioners in production engineering, but the book may also be of interest to graduate students alike.
Sandwich structures are an economically and structurally efficient way of designing large integral composite parts. In the aerospace industry pre-impregnated face sheets and honeycomb core structures can be considered as industry standard while e.g. naval structures and wind turbine blades typically use vacuum infusion technology with polymer foam cores. Application of the less costly infusion technology in the aeronautical industry requires a thorough understanding of the damage tolerance including low velocity impact as a frequent source of damaging events. At low impact energies damage in composite foam core sandwich structures is limited to core crushing and local face sheet delamination...
Micro Metal Forming, i. e. forming of parts and features with dimensions below 1 mm, is a young area of research in the wide field of metal forming technologies, expanding the limits for applying metal forming towards micro technology. The essential challenges arise from the reduced geometrical size and the increased lot size. In order to enable potential users to apply micro metal forming in production, information about the following topics are given: tribological behavior: friction between tool and work piece as well as tool wear mechanical behavior: strength and formability of the work piece material, durability of the work pieces size effects: basic description of effects occurring due ...
High quality optical components for consumer products made of glass and plastic are mostly fabricated by replication. This highly developed production technology requires several consecutive, well-matched processing steps called a "process chain" covering all steps from mold design, advanced machining and coating of molds, up to the actual replication and final precision measurement of the quality of the optical components. Current market demands for leading edge optical applications require high precision and cost effective parts in large volumes. For meeting these demands it is necessary to develop high quality process chains and moreover, to crosslink all demands and interdependencies within these process chains. The Transregional Collaborative Research Center "Process chains for the replication of complex optical elements" at Bremen, Aachen and Stillwater worked extensively and thoroughly in this field from 2001 to 2012. This volume will present the latest scientific results for the complete process chain giving a profound insight into present-day high-tech production.
None
This book presents the proceedings of the International Conference on Residual Stresses 10 and is devoted to the prediction/modelling, evaluation, control, and application of residual stresses in engineering materials. New developments, on stress-measurement techniques, on modelling and prediction of residual stresses and on progress made in the fundamental understanding of the relation between the state of residual stress and the material properties, are highlighted. The proceedings offer an overview of the current understanding of the role of residual stresses in materials used in wide ranging application areas.
In EC3, the fatigue life of a steel structure subjected to a cyclic load is estimated by its detail category. This category is based on the S-N, curves which are obtained by applying the Basquin model. Statistically, this model does not allow extrapolating the S-N curves in the HCF region, neither does it consider the runouts. This affects the fatigue life estimation when a structure bears loading in HCF. To overcome these deficiencies, a new method based on a Weibull distribution is applied.
Steels: Structure, Properties and Design is an essential text and reference, providing indispensable foundational content for researchers, metallurgists, and engineers in industry and academia. The book provides inspiring content for undergraduates, yet has a depth that makes it useful to researchers. Steels represent the most used metallic materials, possessing a wide range of structures and properties. By examining the properties of steels in conjunction with structure, the book provides a valuable description of the development and behavior of these materials- the very foundation of their widespread use. The new edition has been thoroughly revised and updated with 2 new chapters, expanded...
Thermal processes are key manufacturing steps in producing durable and useful products, with solidification, welding, heat treating, and surface engineering being primary steps. These papers represent the latest state-of-the-art in thermal process modeling. The breadth of topics covers the depth of the industry.
The book reports on a novel approach for holistically identifying the relevant state drivers of complex, multi-stage manufacturing systems. This approach is able to utilize complex, diverse and high-dimensional data sets, which often occur in manufacturing applications, and to integrate the important process intra- and interrelations. The approach has been evaluated using three scenarios from different manufacturing domains (aviation, chemical and semiconductor). The results, which are reported in detail in this book, confirmed that it is possible to incorporate implicit process intra- and interrelations on both a process and programme level by applying SVM-based feature ranking. In practice, this method can be used to identify the most important process parameters and state characteristics, the so-called state drivers, of a manufacturing system. Given the increasing availability of data and information, this selection support can be directly utilized in, e.g., quality monitoring and advanced process control. Importantly, the method is neither limited to specific products, manufacturing processes or systems, nor by specific quality concepts.