Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Metric Spaces
  • Language: en
  • Pages: 238

Metric Spaces

One of the first books to be dedicated specifically to metric spaces Full of worked examples, to get complex ideas across more easily

Multivariable Analysis
  • Language: en
  • Pages: 399

Multivariable Analysis

This book provides a rigorous treatment of multivariable differential and integral calculus. Implicit function theorem and the inverse function theorem based on total derivatives is explained along with the results and the connection to solving systems of equations. There is an extensive treatment of extrema, including constrained extrema and Lagrange multipliers, covering both first order necessary conditions and second order sufficient conditions. The material on Riemann integration in n dimensions, being delicate by its very nature, is discussed in detail. Differential forms and the general Stokes' Theorem are expounded in the last chapter. With a focus on clarity rather than brevity, thi...

An Introduction to Complex Analysis
  • Language: en
  • Pages: 480

An Introduction to Complex Analysis

  • Type: Book
  • -
  • Published: 2004-06-25
  • -
  • Publisher: CRC Press

Like real analysis, complex analysis has generated methods indispensable to mathematics and its applications. Exploring the interactions between these two branches, this book uses the results of real analysis to lay the foundations of complex analysis and presents a unified structure of mathematical analysis as a whole. To set the groundwork and mitigate the difficulties newcomers often experience, An Introduction to Complex Analysis begins with a complete review of concepts and methods from real analysis, such as metric spaces and the Green-Gauss Integral Formula. The approach leads to brief, clear proofs of basic statements - a distinct advantage for those mainly interested in applications...

Measure and Integration
  • Language: en
  • Pages: 609

Measure and Integration

This textbook provides a thorough introduction to measure and integration theory, fundamental topics of advanced mathematical analysis. Proceeding at a leisurely, student-friendly pace, the authors begin by recalling elementary notions of real analysis before proceeding to measure theory and Lebesgue integration. Further chapters cover Fourier series, differentiation, modes of convergence, and product measures. Noteworthy topics discussed in the text include Lp spaces, the Radon–Nikodým Theorem, signed measures, the Riesz Representation Theorem, and the Tonelli and Fubini Theorems. This textbook, based on extensive teaching experience, is written for senior undergraduate and beginning graduate students in mathematics. With each topic carefully motivated and hints to more than 300 exercises, it is the ideal companion for self-study or use alongside lecture courses.

Elements of Hilbert Spaces and Operator Theory
  • Language: en
  • Pages: 528

Elements of Hilbert Spaces and Operator Theory

  • Type: Book
  • -
  • Published: 2017-03-27
  • -
  • Publisher: Springer

The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different ...

Elements of Real Analysis
  • Language: en
  • Pages: 769

Elements of Real Analysis

A student-friendly guide to learning all the important ideas of elementary real analysis, this resource is based on the author's many years of experience teaching the subject to typical undergraduate mathematics majors.

Elements of Real Analysis
  • Language: en
  • Pages: 769

Elements of Real Analysis

Elementary Real Analysis is a core course in nearly all mathematics departments throughout the world. It enables students to develop a deep understanding of the key concepts of calculus from a mature perspective. Elements of Real Analysis is a student-friendly guide to learning all the important ideas of elementary real analysis, based on the author's many years of experience teaching the subject to typical undergraduate mathematics majors. It avoids the compact style of professional mathematics writing, in favor of a style that feels more comfortable to students encountering the subject for the first time. It presents topics in ways that are most easily understood, yet does not sacrifice ri...

Advances in Ultrametric Analysis
  • Language: en
  • Pages: 298

Advances in Ultrametric Analysis

Articles included in this book feature recent developments in various areas of non-Archimedean analysis: summation of -adic series, rational maps on the projective line over , non-Archimedean Hahn-Banach theorems, ultrametric Calkin algebras, -modules with a convex base, non-compact Trace class operators and Schatten-class operators in -adic Hilbert spaces, algebras of strictly differentiable functions, inverse function theorem and mean value theorem in Levi-Civita fields, ultrametric spectra of commutative non-unital Banach rings, classes of non-Archimedean Köthe spaces, -adic Nevanlinna theory and applications, and sub-coordinate representation of -adic functions. Moreover, a paper on the history of -adic analysis with a comparative summary of non-Archimedean fields is presented. Through a combination of new research articles and a survey paper, this book provides the reader with an overview of current developments and techniques in non-Archimedean analysis as well as a broad knowledge of some of the sub-areas of this exciting and fast-developing research area.

Diagonalization in Formal Mathematics
  • Language: en
  • Pages: 94

Diagonalization in Formal Mathematics

In this book, Paulo Guilherme Santos studies diagonalization in formal mathematics from logical aspects to everyday mathematics. He starts with a study of the diagonalization lemma and its relation to the strong diagonalization lemma. After that, Yablo’s paradox is examined, and a self-referential interpretation is given. From that, a general structure of diagonalization with paradoxes is presented. Finally, the author studies a general theory of diagonalization with the help of examples from mathematics.

Mathematical Analysis
  • Language: en
  • Pages: 462

Mathematical Analysis

Suitable for senior undergraduate and beginning graduate students, this book provides an introduction to basic mathematical analysis.