You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Ideal for a first course in complex analysis, this book can be used either as a classroom text or for independent study. Written at a level accessible to advanced undergraduates and beginning graduate students, the book is suitable for readers acquainted with advanced calculus or introductory real analysis. The treatment goes beyond the standard material of power series, Cauchy's theorem, residues, conformal mapping, and harmonic functions by including accessible discussions of intriguing topics that are uncommon in a book at this level. The flexibility afforded by the supplementary topics and applications makes the book adaptable either to a short, one-term course or to a comprehensive, full-year course. Detailed solutions of the exercises both serve as models for students and facilitate independent study. Supplementary exercises, not solved in the book, provide an additional teaching tool. This second edition has been painstakingly revised by the author's son, himself an award-winning mathematical expositor.
Ideal for a first course in complex analysis, this book can be used either as a classroom text or for independent study. Written at a level accessible to advanced undergraduates and beginning graduate students, the book is suitable for readers acquainted with advanced calculus or introductory real analysis. The treatment goes beyond the standard material of power series, Cauchy's theorem, residues, conformal mapping, and harmonic functions by including accessible discussions of intriguing topics that are uncommon in a book at this level. The flexibility afforded by the supplementary topics and applications makes the book adaptable either to a short, one-term course or to a comprehensive, full-year course. Detailed solutions of the exercises both serve as models for students and facilitate independent study. Supplementary exercises, not solved in the book, provide an additional teaching tool.
This is a revised, updated, and significantly augmented edition of a classic Carus Monograph (a bestseller for over 25 years) on the theory of functions of a real variable. Earlier editions of this classic Carus Monograph covered sets, metric spaces, continuous functions, and differentiable functions. The fourth edition adds sections on measurable sets and functions, the Lebesgue and Stieltjes integrals, and applications. The book retains the informal chatty style of the previous editions, remaining accessible to readers with some mathematical sophistication and a background in calculus. The book is, thus, suitable either for self-study or for supplemental reading in a course on advanced cal...
This is a revised, updated, and significantly augmented edition of a classic Carus Monograph (a bestseller for over 25 years) on the theory of functions of a real variable. Earlier editions of this classic Carus Monograph covered sets, metric spaces, continuous functions, and differentiable functions. The fourth edition adds sections on measurable sets and functions, the Lebesgue and Stieltjes integrals, and applications. The book retains the informal chatty style of the previous editions, remaining accessible to readers with some mathematical sophistication and a background in calculus. The book is, thus, suitable either for self-study or for supplemental reading in a course on advanced cal...
This book covers the construction, analysis, and theory of continuous nowhere differentiable functions, comprehensively and accessibly. After illuminating the significance of the subject through an overview of its history, the reader is introduced to the sophisticated toolkit of ideas and tricks used to study the explicit continuous nowhere differentiable functions of Weierstrass, Takagi–van der Waerden, Bolzano, and others. Modern tools of functional analysis, measure theory, and Fourier analysis are applied to examine the generic nature of continuous nowhere differentiable functions, as well as linear structures within the (nonlinear) space of continuous nowhere differentiable functions....
Mathematicians have pondered the psychology of the members of our tribe probably since mathematics was invented, but for certain since Hadamard’s The Psychology of Invention in the Mathematical Field. The editors asked two dozen prominent mathematicians (and one spouse thereof) to ruminate on what makes us different. The answers they got are thoughtful, interesting and thought-provoking. Not all respondents addressed the question directly. Michael Atiyah reflects on the tension between truth and beauty in mathematics. T.W. Körner, Alan Schoenfeld and Hyman Bass chose to write, reflectively and thoughtfully, about teaching and learning. Others, including Ian Stewart and Jane Hawkins, write about the sociology of our community. Many of the contributions range into philosophy of mathematics and the nature of our thought processes. Any mathematician will find much of interest here.
This book uses only linear algebra and basic group theory to study the properties of knots.
The book introduces complex analysis as a natural extension of the calculus of real-valued functions. The mechanism for doing so is the extension theorem, which states that any real analytic function extends to an analytic function defined in a region of the complex plane. The connection to real functions and calculus is then natural. The introduction to analytic functions feels intuitive and their fundamental properties are covered quickly. As a result, the book allows a surprisingly large coverage of the classical analysis topics of analytic and meromorphic functions, harmonic functions, contour integrals and series representations, conformal maps, and the Dirichlet problem. It also introd...