You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume is not an ordinary proceedings volume assembling papers submitted but a collection of prestigious survey papers on various subjects studied enthusiastically by experts all over the world. The reader will uncover profound, new research problems as well as numerous signposts for future direction.
An integral formula for the subregular germ of a [italic small capital]K-orbital integral is developed. The formula holds for any reductive group over a [italic]p-adic field of characteristic zero. This expression of the subregular germ is obtained by applying Igusa's theory of asymptotic expansions. The integral formula is applied to the question of the transfer of a [italic small capital]K-orbital integral to an endoscopic group. It is shown that the quadratic characters arising in the subregular germs are compatible with the transfer. Details of the transfer are given for the subregular germ of unitary groups.
The authors' argument is a spiritual descendent of earlier work of Adler and Weiss, Sinaĭ, and Bowen, and involves a close study of triangulations. The discussion is long and technical, but the outline of the proof is sketched clearly in Section 1 for the special case of [italic]F an expanding immersion. A concluding section lists problems on hyperbolic sets, Markov partitions, and related matters; remarks on topological invariants, including the conjectured vanishing of Pontryagin classes for manifolds supporting Anosov diffeomorphisms, may be of particular interest.
This memoir is devoted to the case of constant mean curvature surfaces immersed in [bold]R3. We reduce this geometrical problem to finding certain integrable solutions to the Gauss equation. Many new and interesting examples are presented, including immersed cylinders in [bold]R3 with embedded Delaunay ends and [italic]n-lobes in the middle, and one-parameter families of immersed constant mean curvature tori in [bold]R3. We examine minimal surfaces in hyperbolic three-space, which is in some ways the most complicated case.
This work initiates a systematic analysis of the representation of real forms of even degree as sums of powers of linear forms and the resulting implications in real algebraic geometry, number theory, combinatorics, functional analysis, and numerical analysis. The proofs utilize elementary techniques from linear algebra, convexity, number theory, and real algebraic geometry and many explicit examples and relevant historical remarks are presented.
Similar in philosophy to the study of moduli spaces in algebraic geometry, the central theme of this book is that spaces of (pseudoconvex) domains should admit geometrical structures that reflect the complex geometry of the underlying domains in a natural way. With its unusual geometric perspective of some topics in several complex variables, this book appeals to those who view much of mathematics in broadly geometrical terms.
In this paper, we discuss the existence, uniqueness and asymptotic behavior of positive solutions of the equation −[capital Greek]Delta[italic]u = [lowercase Greek]Lambda[function]ƒ([italic]u) in [capital Greek]Omega[surmounted by macron] [times symbol] [−[italic]n, [italic]n], [and] [italic]u = 0 on [partial derivative/boundary/degree of a polynomial symbol]([capital Greek]Omega[surmounted by macron] [times symbol] [−[italic]n, [italic]n]) for [italic]n large. Here [capital Greek]Omega[surmounted by macron] is a bounded domain in [italic capital]R[superscript italic]k with smooth boundary. Note that by rescaling the equation (including [lowercase Greek]Lambda), our theory covers problems on domains ([set membership symbol][capital Greek]Omega[surmounted by macron]) [times symbol] [−1,1] where [set membership symbol] is small.
In chapter one we address the classification of finite subgroups of [italic capitals]SL([bold]3,[double-struck capital]C). This is followed by a general method to find invariant polynomials and their relations of finite subgroups of [italic capitals]GL([bold]3,[double-struck capital]C). Lastly, we recall some properties of quotient varieties and prove that [double-struck capital]C3/[italic capital]G has isolated singularities if and only if [italic capital]G is abelian and 1 is not an eigenvalue of g in [italic capital]G.
In the spirit of Alladi Ramakrishnan’s profound interest and contributions to three fields of science — Mathematics, Statistics, and Physics — this volume contains invited surveys and research articles from prominent members of these communities who also knew Ramakrishnan personally and greatly respected his influence in these areas of science. Historical photos, telegrams, and biographical narratives of Alladi Ramakrishnan’s illustrious career of special interest are included as well.