You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book describes the endeavour to relate the particle spectrum with representations of operational electroweak spacetime, in analogy to the atomic spectrum as characterizing representations of hyperbolic space. The spectrum of hyperbolic position space explains the properties of the nonrelativistic atoms; the spectrum of electroweak spacetime is hoped to explain those of the basic interactions and elementary particles. In this book, the theory of operational symmetries is developed from the numbers, from Plato’s and Kepler’s symmetries over the simple Lie groups to their applications in nonrelativistic, special relativistic and general relativistic quantum theories with the atomic spe...
This collection of nearly forty essays in honor of the noted physicist and cosmologist Engelbert Schucking spans the gamut of research in Einsteins theory of general relativity and presents a lively and personal account of current work in the field. Indispensable for physicists involved in research in the field, the book includes important chapters by noted theorists such as A. Ashtekar, P.G. Bergmann, J. Ehlers, E.T. Newman, J.V. Narlikar, R. Penrose, D.W. Sciama, J. Stachel, and W. Rindler.
This book presents a broad overview of the theory and applications of structure topology and symplectic geometry. Over six chapters, the authors cover topics such as linear operators, Omega and Clifford algebra, and quasiconformal reflection across polygonal lines. The book also includes four interesting case studies on time series analysis in practice. Finally, it provides a snapshot of some current trends and future challenges in the research of symplectic geometry theory. Structure Topology and Symplectic Geometry is a resource for scholars, researchers, and teachers in the field of mathematics, as well as researchers and students in engineering.
The extraordinary range of cultural interests of renowned physicist David Speiser—including the sciences, art, architecture, music, and history of science—has inspired generations of later scientists to look beyond the boundaries of their own disciplines. In this book, seventeen scholars from various fields pay tribute to his multifaceted career, addressing topics as varied as music theory and the nuclear arms race.
Traditionally, Lie Theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrisation of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry which is very helpful in understanding its structure. Geometrisation and symmetries are meant in their broadest sense, i.e., classical geometry, differential geometry, groups and quantum groups, infinite-dimensional (super-)algebras, and their representations. Furthermore, we include the necessary tools from functional analysis and number theory. This is a large interdisciplinary and interrelated field. Samples of these new trends are presented in this volume, based on contributions from the Workshop “Lie Theory and Its Applications in Physics” held near Varna, Bulgaria, in June 2011. This book is suitable for an extensive audience of mathematicians, mathematical physicists, theoretical physicists, and researchers in the field of Lie Theory.
The invited papers in this volume provide a detailed examination of Clifford algebras and their significance to analysis, geometry, mathematical structures, physics, and applications in engineering. While the papers collected in this volume require that the reader possess a solid knowledge of appropriate background material, they lead to the most current research topics. With its wide range of topics, well-established contributors, and excellent references and index, this book will appeal to graduate students and researchers.
The book provides readers with an understanding of the mutual conditioning of spacetime and interactions and matter. The spacetime manifold will be looked at to be a reservoir for the parametrization of operation Lie groups or subgroup classes of Lie groups. With basic operation groups or Lie algebras, all physical structures can be interpreted in terms of corresponding realizations or representations. Physical properties are related eigenvalues or invariants. As an explicit example of operational spacetime is proposed, called electroweak spacetime, parametrizing the classes of the internal hypercharge - isospin group in the general linear group in two complex dimensions, i.e., the Lorentz cover group, extended by the casual (dilation) and phase group. Its representations and invariants will be investigated with the aim to connect them, qualitatively and numerically, with the properties of interactions and particles as arising in the representations of its tangent Minkowski spaces.
The book contains the text of lectures given at the third of a series of biennial symposia in mathematical physics held in odd-numbered years. The subject of the symposium is the frontiers of mathematical physics. It deals with quantum phenomena and includes topics such as string theory and quantum gravity, particle physics and field theory, non-communative geometry, integrable models and infinite dimensional symmetry groups, quantum computing and information processing, and quantum chaos.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings® (ISTP® / ISI Proceedings)• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)• CC Proceedings — Engineering & Physical Sciences