You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume represents the state of the art of the science covered by the International Association of Geomagnetism and Aeronomy (IAGA) Division IV: Solar Wind and Interplanetary Field. It contains a collection of contributions by top experts addressing and reviewing a variety of topics included under the umbrella of the division. It covers subjects that extend from the interior of the Sun to the heliopause, and from the study of physical processes in the Sun and the solar wind plasma to space weather forecasts. The book is organized in 6 parts: the solar interior, the solar atmosphere, the heliosphere, heliophysical processes, radio emissions, and coordinated science in the Sun-Earth system. In addition, we highlight some of the results presented during the IAGA Division IV symposia in the 11th Scientific Assembly of IAGA in Sopron, Hungary, on 23-30 August 2009, which was planned simultaneously with this book.
9 MHDTurbulence in the Heliosphere: Evolution and Intermittency 253 Bruno Bavassano, Roberto Bruno and Vincenzo Carbone 1 Introduction 254 2 MHD Turbulence Evolution 255 2. 1 Ecliptic Turbulence 256 2. 2 Polar Turbulence 258 2. 3 Conclusions on Turbulence Evolution 263 3 Intermittency 264 3. 1 Probability Distribution Functions of Fluctuations and Self-similarity 269 3. 2 Radial Evolution of Intermittency 271 3. 3 Identifying Intermittent Events 273 3. 4 Conclusions on Intermittency 277 10 283 Waves and Turbulence in the Solar Corona Eckart Marsch 1 Introduction 284 2 Coronal Magnetic Field Structures 284 3 Magnetic Network Activity and Coronal Heating 287 4 Waves and Flows in Loops and Funn...
Physics of the Inner Heliosphere gives for the first time a comprehensive and complete summary of our knowledge of the inner solar system. Using data collected over more than 11 years by the HELIOS twin solar probes, one of the most successful ventures in unmanned space exploration, the authors have compiled six extensive reviews of the physical processes of the inner heliosphere and their relation to the solar atmosphere. Researchers and advanced students in space and plasma physics, astronomy, and solar physics will be surprised to see just how closely the heliosphere is tied to, and how sensitively it depends on, the sun. Volume 2 deals with particles, waves, and turbulence, with chapters on: - magnetic clouds - interplanetary clouds - the solar wind plasma and MHD turbulence - waves and instabilities - energetic particles in the inner solar system
Contributors examine the physics of wind origin and physical phenomena in winds, including heliospheric shocks, magnetohydrodynamic turbulence, and kinetic phenomena--and their interactions with surrounding media. Contributions range from studies of the interstellar cloud surrounding the solar system to solar wind interaction with comets.
On the Ulysses mission scientists gathered observations from the unexplored regions of the heliosphere. This book presents a highly readable and concise account of the results. The authors summarise our understanding of the area and provide the basis for understanding the more complex state of the heliosphere around solar maximum. The first chapter provides an overview of the region, introducing the heliosphere prior to the Ulysses mission, and mission objectives. Subsequent chapters discuss the areas of the heliosphere, large and small scale features, cosmic rays and energetic particles, and the observations of interstellar gas and cosmic dust.
Written by experts who created the field, this volume explores uncharted scientific territory, with articles discussing the effect of our galactic environment on the heliosphere, planetary system and Earth. Leading experts in diverse fields discuss the physical changes expected as the heliosphere adjusts to its galactic environment. Topics include the interaction between solar wind and interstellar dust and gas, cosmic ray modulation, magnetospheres, variations in the solar environment, and the cosmic ray isotope record preserved in paleoclimate data.
Observations and physical concepts are interwoven to give basic explanations of phenomena and also show the limitations in these explanations and identify some fundamental questions. Compared to conventional plasma physics textbooks this book focuses on the concepts relevant in the large-scale space plasmas. It combines basic concepts with current research and new observations in interplanetary space and in the magnetospheres. Graduate students and young researchers starting to work in this special field of science, will find the numerous references to review articles as well as important original papers helpful to orientate themselves in the literature. Emphasis is on energetic particles and their interaction with the plasma as examples for non-thermal phenomena, shocks and their role in particle acceleration as examples for non-linear phenomena. This second edition has been updated and extended. Improvements include: the use of SI units; addition of recent results from SOHO and Ulysses; improved treatment of the magnetosphere as a dynamic phenomenon; text restructured to provide a closer coupling between basic physical concepts and observed complex phenomena.
Physics of the Inner Heliosphere gives for the first time a comprehensive and complete summary of our knowledge of the inner solar system. Using data collected over more than 11 years by the HELIOS twin solar probes, one of the most successful ventures in unmanned space exploration, the authors have compiled six extensive reviews of the physical processes of the inner heliosphere and their relation to the solar atmosphere. Researchers and advanced students in space and plasma physics, astronomy, and solar physics will be surprised to see just how closely the heliosphere is tied to, and how sensitively it depends on, the sun. Volume 2 deals with particles, waves, and turbulence, with chapters on: - magnetic clouds - interplanetary clouds - the solar wind plasma and MHD turbulence - waves and instabilities - energetic particles in the inner solar system
Taking an interdisciplinary approach, this book explores what makes the conditions on Earth 'just right' to sustain life.
This monograph traces the development of our understanding of how and where energetic particles are accelerated in the heliosphere and how they may reach the Earth. Detailed data sets are presented which address these topics. The bulk of the observations are from spacecraft in or near the ecliptic plane. It is timely to present this subject now that Voyager-1 has entered the true interstellar medium. Since it seems unlikely that there will be a follow-on to the Voyager programme any time soon, the data we already have regarding the outer heliosphere are not going to be enhanced for at least 40 years.