You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book introduces fundamental concepts in kinetics that relate to system biology. The text is suitable for junior/senior undergraduates and graduates who need access to information relevant to modeling biochemical pathways.
This book introduces fundamental concepts in kinetics that relate to system biology. Topics include basic kinetics, enzyme kinetics, generalized rate laws, gene regulation and introduction to elasticities. The text is suitable for junior/senior undergraduates and graduates who need access to information relevant to modeling biochemical pathways.
Computer models of biochemical systems are starting to play an increasingly important role in modern systems and synthetic biology. This monograph introduces students to some of the essential topics in biochemical modeling using differential equations and stochastic models. The book includes many hands-on modeling exercises using Python and examples that illustrate many important concepts, including the stoichiometric networks, building models, running simulations, model fitting, stability of systems and multicompartment systems.
The book deals with engineering aspects of the two emerging and intertwined fields of synthetic and systems biology. Both fields hold promise to revolutionize the way molecular biology research is done, the way today’s drug discovery works and the way bio-engineering is done. Both fields stress the importance of building and characterizing small bio-molecular networks in order to synthesize incrementally and understand large complex networks inside living cells. Reminiscent of computer-aided design (CAD) of electronic circuits, abstraction is believed to be the key concept to achieve this goal. It allows hiding the overwhelming complexity of cellular processes by encapsulating network parts into abstract modules. This book provides a unique perspective on how concepts and methods from CAD of electronic circuits can be leveraged to overcome complexity barrier perceived in synthetic and systems biology.
This volume focuses on the computational modeling of cell signaling networks and the application of these models and model-based analysis to systems and personalized medicine. Chapters guide readers through various modeling approaches for signaling networks, new methods and techniques that facilitate model development and analysis, and new applications of signaling network modeling towards systems and personalized treatment of cancer. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and methods, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Computational Modeling of Signaling Networks aims to benefit a wide spectrum of readers including researchers from the biological as well as computational systems biology communities.
Systems Biology is concerned with the quantitative study of complex biosystems at the molecular, cellular, tissue, and systems scales. Its focus is on the function of the system as a whole, rather than on individual parts. This exciting new arena applies mathematical modeling and engineering methods to the study of biological systems. This book is the first of its kind to focus on the newly emerging field of systems biology with an emphasis on computational approaches. The work covers new concepts, methods for information storage, mining and knowledge extraction, reverse engineering of gene and metabolic networks, as well as modelling and simulation of multi-cellular systems. Central themes include strategies for predicting biological properties and methods for elucidating structure-function relationships.
Systems biology is the study of organisms as interacting networks of genes, proteins and reactions. Practical Systems Biology provides a detailed overview of the different approaches used in this relatively new discipline, integrating bioinformatics, genomics, proteomics and metabolomics. Various areas of research are also discussed, including the use of computational models of biological processes, and post-genomic research. Each chapter is written by an experienced researcher and gives an excellent account of various issues of systems biology that is suitable for postgraduate and postdoctoral researchers who are interested in this expanding area of science.
An introduction to the quantitative modeling of biological processes, presenting modeling approaches, methodology, practical algorithms, software tools, and examples of current research. The quantitative modeling of biological processes promises to expand biological research from a science of observation and discovery to one of rigorous prediction and quantitative analysis. The rapidly growing field of quantitative biology seeks to use biology's emerging technological and computational capabilities to model biological processes. This textbook offers an introduction to the theory, methods, and tools of quantitative biology. The book first introduces the foundations of biological modeling, foc...
For life to be understood and disease to become manageable, the wealth of postgenomic data now needs to be made dynamic. This development requires systems biology, integrating computational models for cells and organisms in health and disease; quantitative experiments (high-throughput, genome-wide, living cell, in silico); and new concepts and principles concerning interactions. This book defines the new field of systems biology and discusses the most efficient experimental and computational strategies. The benefits for industry, such as the new network-based drug-target design validation, and testing, are also presented.
Mitogen-activated protein kinase (MAPK) signaling cascades are a group of protein kinases that play a central role in the intracellular transmission of extracellular signals. These cascades operate as major lines of communication within a complicated signaling network that regulates many cellular processes, including proliferation, differentiation, development, stress response, and apoptosis. More than 15,000 papers on MAPKs have been published over the past few years, with the number of publications increasing each year. More and more laboratories embark on the study of MAPK cascades in many d- tinct cellular systems and in particular their role in disease. Future challenges in the study of...