You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Expository and research articles by renowned mathematicians on the myriad properties of the Klein quartic.
Provides an introduction to critical point theory and shows how it solves many difficult problems.
This volume presents the proceedings of a conference on differential geometry held in honour of the 60th birthday of A M Naveira. The meeting brought together distinguished researchers from a variety of areas in Riemannian geometry. The topics include: geometry of the curvature tensor, variational problems for geometric functionals such as WillmoreOCoChen tension, volume and energy of foliations and vector fields, and energy of maps. Many papers concern special submanifolds in Riemannian and Lorentzian manifolds, such as those with constant mean (scalar, Gauss, etc.) curvature and those with finite total curvature."
Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have different and distinctive flavors, often attractive to some mathematicians and repellant to others. The particular flavor of the subject of minimal surfaces seems to lie in a combination of the concreteness of the objects being studied, their origin and relation to the physical world, and the way they lie at the intersection of so many different parts of mathematics. In the past fifteen years a new component has been added: the availability of computer graphics to provide illustrations that are both mathematically instructive and esthetically ple...
During the time from June 28-July 1, 1978, representatives of different branches of geometry met in Siegen for discussion of and reports on current problems. In particular, the survey lectures, presented by well known geometers, gave nonspecialists the welcome opportunity to learn about the questions posed, the methods used and the results obtained in different areas of the field of geometry. The research areas represented at the meeting in Siegen are reflected in the list of participants and their contributions: Ranging from geometric convexity and related topics to differential geometry and kinematics. The foundations of geometry, an area well established in Germany, was also represented. ...
Minimal Surfaces I is an introduction to the field of minimal surfaces and a presentation of the classical theory as well as of parts of the modern development centered around boundary value problems. Part II deals with the boundary behaviour of minimal surfaces. Part I is particularly apt for students who want to enter this interesting area of analysis and differential geometry which during the last 25 years of mathematical research has been very active and productive. Surveys of various subareas will lead the student to the current frontiers of knowledge and can also be useful to the researcher. The lecturer can easily base courses of one or two semesters on differential geometry on Vol. 1...
This textbook offers an introduction to differential geometry designed for readers interested in modern geometry processing. Working from basic undergraduate prerequisites, the authors develop manifold theory and Lie groups from scratch; fundamental topics in Riemannian geometry follow, culminating in the theory that underpins manifold optimization techniques. Students and professionals working in computer vision, robotics, and machine learning will appreciate this pathway into the mathematical concepts behind many modern applications. Starting with the matrix exponential, the text begins with an introduction to Lie groups and group actions. Manifolds, tangent spaces, and cotangent spaces fo...
A 52 illustration two-part book on the exploration of minimal surfaces. Part 1 explores the surface from an artistic perspective, and part 2 visually reproduces the equations that stand in their own right as a beautiful expression of pure geometry. Each book includes notes from an informal work-in-progress diary and references directing the reader to the images’ original mathematical source. Both sides complement each other in helping us appreciate better these unrivaled expressions of our environment found in nature, from butterflies to black holes, and studied in statistics, material sciences, and architecture.
This volume is, as may be readily apparent, the fruit of many years’ labor in archives and libraries, unearthing rare books, researching Nachlässe, and above all, systematic comparative analysis of fecund sources. The work not only demanded much time in preparation, but was also interrupted by other duties, such as time spent as a guest professor at universities abroad, which of course provided welcome opportunities to present and discuss the work, and in particular, the organizing of the 1994 International Graßmann Conference and the subsequent editing of its proceedings. If it is not possible to be precise about the amount of time spent on this work, it is possible to be precise about the date of its inception. In 1984, during research in the archive of the École polytechnique, my attention was drawn to the way in which the massive rupture that took place in 1811—precipitating the change back to the synthetic method and replacing the limit method by the method of the quantités infiniment petites—significantly altered the teaching of analysis at this first modern institution of higher education, an institution originally founded as a citadel of the analytic method.