You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
None
This book constitutes the refereed proceedings of the 22nd International Conference on Theorem Proving in Higher Order Logics, TPHOLs 200, held in Munich, Germany, in August 2009. The 26 revised full papers presented together with 1 proof pearl, 4 tool presentations, and 3 invited papers were carefully reviewed and selected from 55 submissions. The papers cover all aspects of theorem proving in higher order logics as well as related topics in theorem proving and verification such as formal semantics of specification, modeling, and programming languages, specification and verification of hardware and software, formalization of mathematical theories, advances in theorem prover technology, as well as industrial application of theorem provers.
The theory of analyzable functions is a technique used to study a wide class of asymptotic expansion methods and their applications in analysis, difference and differential equations, partial differential equations and other areas of mathematics. Key ideas in the theory of analyzable functions were laid out by Euler, Cauchy, Stokes, Hardy, E. Borel, and others. Then in the early 1980s, this theory took a great leap forward with the work of J. Ecalle. Similar techniques and conceptsin analysis, logic, applied mathematics and surreal number theory emerged at essentially the same time and developed rapidly through the 1990s. The links among various approaches soon became apparent and this body of ideas is now recognized as a field of its own with numerous applications. Thisvolume stemmed from the International Workshop on Analyzable Functions and Applications held in Edinburgh (Scotland). The contributed articles, written by many leading experts, are suitable for graduate students and researchers interested in asymptotic methods.
The text offers a combination of certain emerging topics and important research advances in the area of differential equations. The topics range widely and include magnetic Schroedinger operators, the Boltzmann equations, nonlinear variational problems and noncommutative probability theory. The text is suitable for graduate and advanced graduate courses and seminars on the topic, as well as research mathematicians and physicists working in mathematical physics, applied mathematics, analysis and differential equations.
This volume contains the main contributions to the 14th International Conference on Recent Progress in Many-Body Theories (RPMBT14) held at the Technical University of Catalonia, Spain, in July 2007. This conference, which was first held in Trieste in 1979, is devoted to new developments in the field of many-body theories, which are being applied and developed in a rapidly growing number of fields. The emphasis is twofold: progress in the technical aspects of microscopic theories and a review of recent applications of many-body techniques. In addition to the more traditional topics, such as nuclear physics and quantum liquids, the present volume also includes the most recent results on atomic physics, cold Bose and Fermi gases, phase transitions and quantum information. Moreover, the volume contains the lectures of the winners of the 2007 Feenberg Medal and 2007 Kuemmel Award, as well as their laudatios.
A thorough and concise treatment of ESD Recognizing its methodic, step-by-step attack of the electrostatic discharge (ESD) problem, the initial release of this book was quoted by specialists as "the most thorough and concise treatment of the broad ESD continuum that is available." Now in its Third Edition, this book delivers the same trusted coverage of the topic while also incorporating recent technological advances that have taken place in the engineering community. The book begins with the basics of ESD for humans and objects, and goes on to cover: Effects of ESD coupled to electronics Principal ESD specifications ESD diagnostics and testing Design for ESD immunity To help with troubleshooting, many ESD case histories are given along with their successful fixes. Electrostatic Discharge is essential reading for all designers who want to avoid component failures, no trouble found incidents, and random errors.