You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
After near-victory in the World Cup, Jamie has landed his ultimate dream job. But when disaster strikes, are his days of football glory about to become a distant memory?
None
Before the packed stadiums. Before he became a huge star. Jamie Johnson had to learn from the best. Jamie is the top player at his school but there's something missing from his game. He needs that bit of extra flair. He wants that touch of magic. Can the once-in-a-lifetime chance to train on the beaches of Brazil give Jamie the skills he needs to become a legend?
Mathematical Biology has grown at an astonishing rate and has established itself as a distinct discipline. Mathematical modeling is now being applied in every major discipline in the biological sciences. Though the field has become increasingly large and specialized, this book remains important as a text that introduces some of the exciting problems which arise in the biological sciences and gives some indication of the wide spectrum of questions that modeling can address.
Delay Differential Equations emphasizes the global analysis of full nonlinear equations or systems. The book treats both autonomous and nonautonomous systems with various delays. Key topics addressed are the possible delay influence on the dynamics of the system, such as stability switching as time delay increases, the long time coexistence of populations, and the oscillatory aspects of the dynamics. The book also includes coverage of the interplay of spatial diffusion and time delays in some diffusive delay population models. The treatment presented in this monograph will be of great value in the study of various classes of DDEs and their multidisciplinary applications.
The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems. - Presents comprehensive theory and methodology of stability analysis - Can be used as textbook for graduate students in applied mathematics, mechanics, control theory, theoretical physics, mathematical biology, information theory, scientific computation - Serves as a comprehensive handbook of stability theory for practicing aerospace, control, mechanical, structural, naval and civil engineers
Mathematical ecology is a subject which recently attracts attentions of many mathematicians and biologists. One of the most important and fundamental mathematical models in ecology is of Lotka-Volterra type. This book gives global dynamical properties of L-V systems. The properties analyzed are global stability of the equilibria, persistence or permanence of the systems (which ensures the survival of all the biological-species composed of the systems for the long term) and the existence of periodic or chaotic solutions. The special subject of this book is to consider the effects of the systems structure, diffusion of the biological species and time delay on the global dynamical properties of the systems.
The purpose of this volume is to present and discuss the many rich properties of the dynamical systems that appear in life science and medicine. It provides a fascinating survey of the theory of dynamical systems in biology and medicine. Each chapter will serve to introduce students and scholars to the state-of-the-art in an exciting area, to present new results, and to inspire future contributions to mathematical modeling in life science and medicine.
Population dynamics is an important subject in mathematical biology. A cen tral problem is to study the long-term behavior of modeling systems. Most of these systems are governed by various evolutionary equations such as difference, ordinary, functional, and partial differential equations (see, e. g. , [165, 142, 218, 119, 55]). As we know, interactive populations often live in a fluctuating environment. For example, physical environmental conditions such as temperature and humidity and the availability of food, water, and other resources usually vary in time with seasonal or daily variations. Therefore, more realistic models should be nonautonomous systems. In particular, if the data in a m...
This volume contains papers written by participants at the Conference on Functional Differential and Difference Equations held at the Instituto Superior Técnico in Lisbon, Portugal. The conference brought together mathematicians working in a wide range of topics, including qualitative properties of solutions, bifurcation and stability theory, oscillatory behavior, control theory and feedback systems, biological models, state-dependent delay equations, Lyapunov methods, etc. Articles are written by leading experts in the field. A comprehensive overview is given of these active areas of current research. The book will be of interest to both theoretical and applied mathematical scientists.