You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The publication of Vanadium: Biochemical and Molecular Biological Approaches is particularly timely as it exactly coincides with the centennial anniversary of the discovery of vanadium by Professor Henze, in the blood cells of an ascidian (tunicate) collected in Gulf of Naples in 1911. Vanadium, atomic number 23, covers a wide range of oxidation states (from -2 to +5) and has unpaired electrons. Depending on these properties, a wide variety of enzymes and compounds containing vanadium have been found and the biochemical behaviour of vanadium has been investigated extensively. This monograph provides not only the basic properties and recent advances of vanadium chemistry but also presents recent topics on hyper-accumulators of vanadium, enzymatic roles of vanadium, biochemical functions of vanadium and medicinal functions of vanadium, which have been discovered by Biochemical and Molecular Biological Approaches. Vanadium: Biochemical and Molecular Biological Approaches is aimed at pure and applied chemists, biochemists, pharmaceutical and medical scientists.
This book offers practical concepts of EOR processes and summarizes the fundamentals of bioremediation of oil-contaminated sites. The first section presents a simplified description of EOR processes to boost the recovery of oil or to displace and produce the significant amounts of oil left behind in the reservoir during or after the course of any primary and secondary recovery process; it highlights the emerging EOR technological trends and the areas that need research and development; while the second section focuses on the use of biotechnology to remediate the inevitable environmental footprint of crude oil production; such is the case of accidental oil spills in marine, river, and land environments. The readers will gain useful and practical insights in these fields.
Ascidians are the invertebrate group that gave rise to vertebrates, thus the biology of ascidians provides an essential key to understanding both invertebrates and vertebrates. This book is the first to cover all areas of ascidian biology, including development, evolution, biologically active substances, heavy metal accumulation, asexual reproduction, host-defense mechanisms, allorecognition mechanisms, comparative immunology, neuroscience, taxonomy, ecology, genome science, and food science. The 69 articles that make up the collection were contributed by leading ascidiologists from all over the world who participated in the First International Symposium on the Biology of Ascidians, held in June 2000 in Sapporo, Japan. For scientists and students alike, the book is an invaluable source of information from the latest, most comprehensive studies of ascidian biology.
None
Over the past several decades, vanadium has increasingly attracted the interest of biologists and chemists. The discovery by Henze in 1911 that certain marine ascidians accumulate the metal in their blood cells in unusually large quantities has done much to stimulate research on the role of vanadium in biology. In the intervening years, a large number of studies have been carried out to investigate the toxicity of vanadium in higher animals and to determine whether it is an essential trace element. That vanadium is a required element for a few selected organisms is now well established. Whether vanadium is essential for humans remains unclear although evidence increasingly suggests that it p...
The simplicity and lack of redundancy in their regulatory genes have made ascidians one of the most useful species in studying developmental genomics. In Developmental Genomics of Ascidians, Dr. Noriyuki Satoh explains the developmental genomics of ascidians, stresses the simplicity of Ciona developmental system, and emphasizes single-cell level analyses. This book actively accentuates the advantages of using ascidians as model organisms in an up-and-coming field of developmental genomics.
Heavy metals and metalloids, singly or in combination, induce toxic manifestations either through acute or chronic pathology. In particular, long-term chronic exposure to diverse heavy metals and metalloids to humans and animals can lead to numerous physical, muscular, neurological, nephrological, and diverse degenerative diseases and dysfunctions, including multiple sclerosis, muscular dystrophy, Parkinson’s and Alzheimer’s diseases, cardiovascular disorders, and several others. Recognized heavy metals such as lead, mercury, arsenic, cadmium, thallium, and hexavalent chromium are known for enormous toxicity. The immediate vital signs of acute heavy metal exposure include nausea, vomitin...