You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a broad spectrum of insights into the optical principle, resource, fabrication, nanoscience, and nanotechnology of noble metal. It also looks at the advanced implementation of noble metal in the field of nanoscale materials, catalysts and biosystem. This book is ideal not only for scientific researchers but also as a reference for professionals in material science, engineering, nonascience and plasmonics.
This book reports on recent progress in emerging technologies, modern characterization methods, theory and applications of advanced magnetic materials. It covers broad spectrum of topics: technology and characterization of rapidly quenched nanowires for information technology; fabrication and properties of hexagonal ferrite films for microwave communication; surface reconstruction of magnetite for spintronics; synthesis of multiferroic composites for novel biomedical applications, optimization of electroplated inductors for microelectronic devices; theory of magnetism of Fe-Al alloys; and two advanced analytical approaches for modeling of magnetic materials using Everett integral and the inverse problem approach. This book is addressed to a diverse group of readers with general background in physics or materials science, but it can also benefit specialists in the field of magnetic materials.
The contents is dominated by the latest problems of applied electrical engineering, micro electromechanics, biosensor technology and biomagnetism. The book covers the numerical calculation methods for the design and optimization of sensors, actuators and electric machines, as well as the treatment of inverse problems, in materials testing and in the field of medicine in particular. Other central topics are the material properties and their simulation and much consideration is given to micro-electromechanics.
Stem cell and regenerative medicine research is a hot area of research which promises to change the face of medicine as it will be practiced in the years to come. Challenges in the 21st century to combat diseases such as cancer, Alzheimer and related diseases may well be addressed employing stem cell therapies and tissue regeneration. Frontiers in Stem Cell and Regenerative Medicine Research is essential reading for researchers seeking updates in stem cell therapeutics and regenerative medicine. The seventh volume of this series features reviews on roles of mesenchymal stem cells and biomaterials in cartilage regeneration in vivo, liver regeneration, cardiogenesis and magnetic nanoparticles for regenerative therapy.
Magnetic Nano-and Microwires: Design, Synthesis, Properties and Applications, Second Edition, reviews the growth and processing of nanowires and nanowire heterostructures using such methods as sol-gel and electrodeposition, focused-electron/ion-beam-induced deposition, epitaxial growth by chemical vapor transport, and more. Other sections cover engineering nanoporous anodic alumina, discuss magnetic and transport properties, domains, domain walls in nano-and microwires. and provide updates on skyrmions, domain walls, magnetism and transport, and the latest techniques to characterize and analyze these effects. Final sections cover applications, both current and emerging, and new chapters on memory, sensor, thermoelectric and nanorobotics applications. This book will be an ideal resource for academics and industry professionals working in the disciplines of materials science, physics, chemistry, electrical and electronic engineering and nanoscience.
Magnetic Sensors and Actuators in Medicine: Materials, Devices, and Applications provides an overview of the various sensors and actuators, their characteristics, role in the development of medical applications, the medical problems they solve, and future directions. The book brings together recent advances in the physics, chemistry and engineering of magnetic materials related to sensors and actuators that improve their functions in medical applications. The book describes the main applications of magnetic sensors and actuators, starting from the common and emerging magnetic materials, their principles of operation, the medical problems that they are used to address, and the latest achievements in the field. - Reviews a wide range of magnetic sensors and actuators employed in medical applications such as diagnosis, surgery and therapy - Describes magnetic material-based sensors and actuators, including their operation principles, properties and optimization for specific applications - Includes examples of recent advances, such as emerging magnetic materials, magnetic nanowires, nanorods and/or nanotubes
Metallic (magnetic and non-magnetic) nanocrystalline materials have been known for over ten years but only recent developments in the research into those complex alloys and their metastable amorphous precursors have created a need to summarize the most important accomplishments in the field. This book is a collection of articles on various aspects of metallic nanocrystalline materials, and an attempt to address this above need. The main focus of the papers is put on the new issues that emerge in the studies of nanocrystalline materials, and, in particular, on (i) new compositions of the alloys, (ii) properties of conventional nanocrystalline materials, (iii) modeling and simulations, (iv) pr...
The proceedings include both invited and selected contributed papers dealing with magnetic anisotropy and magnetostrictive phenomena. Investigated substances cover a broad spectrum of materials including single crystals with localized and itinerant moments, amorphous phases, magnetic films and multilayers. Various experimental techniques will be presented and discussed. Recent theoretical achievements were also presented.