You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In recent years, the impact of new experimental techniques (e.g., nuclear physics methods, availability of high-intensity light sources) as well as an increasing demand for atomic collision data in other fields of physics (e.g., plasma physics, astrophysics, laser physics, surface physics, etc.) have stimulated a renewed, strong interest in atomic collision research. Due to the explosive development of the various fields, scientists often even have dif ficulty in keeping up with their own area of research; as a result, the overlap between different fields tends to remain rather limited. Instead of having access to the full knowledge accumulated in other fields, one uses only the small fraction which at the moment seems to be of immediate importance to one's own area of interest. Clearly, many fruitful and stimulating ideas are lost in this way, causing progress to be made much more slowly than it could be. Atomic col lision physics is no exception to this rule. Although it is of basic interest to many other areas, it is mostly regarded merely as a (nonetheless important) tool by which to gain additional information.
Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include the electron and photon collisions with atoms, ions and molecules which are required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.
Advances in Atomic and Molecular Physics
Atmospheric chemistry is central to understanding global changes — ozone depletion, appearance of the polar ozone holes, and compositional changes which worsen the greenhouse effect. Because of its importance, work is progressing on many fronts.This volume emphasizes the troposhere and stratosphere and has chapters on gas phase, condensed phase, and heterogeneous chemistry. Present progress is emphasized, and important future directions are also described.This book fills a need not satisfied by any others and will be popular for some years to come. It informs students and newcomers to the field of the many facets of atmospheric chemistry and can be used as a text for advanced students. It is also a valuable desk reference summarizing activities by quite a number of the most active research groups.Chapter 18 by Kolb et al. on heterogeneous chemistry is especially noteworthy because it represents a unique joint effort by several groups working on a very timely subject; they describe a conceptual framework and establish conventions which will be standard in future papers on this subject.
Statistical Mechanics, Kinetic Theory, and Stochastic Processes presents the statistical aspects of physics as a "living and dynamic" subject. In order to provide an elementary introduction to kinetic theory, physical systems in which particle-particle interaction can be neglected are considered. Transport phenomena in the free-molecular flow region for gases and the transport of thermal radiation are discussed. Discrete random processes such as random walk, binomial and Poisson distributions, and throwing of dice are studied by means of the characteristic function. Comprised of 11 chapters, this book begins with an introduction to the mass point gas as well as some elementary properties of ...
This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1955.
If one reflects upon the range of chemical problems accessible to the current quantum theoretical methods for calculations on the electronic structure of molecules, one is immediately struck by the rather narrow limits imposed by economic and numerical feasibility. Most of the systems with which experimental photochemists actually work are beyond the grasp of ab initio methods due to the presence of a few reasonably large aromatic ring systems. Potential energy surfaces for all but the smallest molecules are extremely expensive to produce, even over a restricted group of the possible degrees of freedom, and molecules containing the higher elements of the periodic table remain virtually untou...
Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to wa...