You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book aims at providing a solid basis for the education of the next generation of researchers in hot, dense QCD (Quantum ChromoDynamics) matter. This is a rapidly growing field at the interface of the smallest, i.e. subnuclear physics, and the largest scales, namely astrophysics and cosmology. The extensive lectures presented here are based on the material used at the training school of the European COST action THOR (Theory of hot matter in relativistic heavy-ion collisions). The book is divided in three parts covering ultrarelativistic heavy-ion collisions, several aspects related to QCD, and simulations of QCD and heavy-ion collisions. The scientific tools and methods discussed provide graduate students with the necessary skills to understand the structure of matter under extreme conditions of high densities, temperatures, and strong fields in the collapse of massive stars or a few microseconds after the big bang. In addition to the theory, the set of lectures presents hands-on material that includes an introduction to simulation programs for heavy-ion collisions, equations of state, and transport properties.
The XVIII Lisbon Autumn School brought together physicists from different areas, ranging from QCD to condensed matter. This subject will be of ever-growing importance in the coming years. The topics covered are: Anomalies, Physical Charges, Chiral Symmetry, Vortices (Superconductivity, Solitons, Kosterlitz-Thouless Transitions), Non-trivial Topology on the Lattice, Confinement (Wilson Loops and Strings, Instantons, Abelian Higgs Model, Dual QCD).
Urban histories have emphasized the rise of civic autonomy and proto-democracy. Based on chronicle and archival sources, this volume focuses on German bishops, former lords of the city and fierce opponents of civic freedom. The author investigates how bishops contested exclusion from political, economic, and religious dimensions of civic life (Episcopus exclusus), which culminated in the Protestant Reformation. Four chapters are devoted to episcopal expulsion throughout Germany and the cities of Constance and Augsburg in particular. A remarkable section explores the puzzle of the bishop's civic survival in the later Middle Ages, made possible through episcopal ritual. The emphasis on city, bishop, and ritual will be of special interest to urban historians as well as to scholars of medieval religion, the reformation, church history, church/state relations, and social history.
This latest edition enhances the material of the first edition with a derivation of the value of the action for each of the Harrington–Shepard calorons/anticalorons that are relevant for the emergence of the thermal ground state. Also included are discussions of the caloron center versus its periphery, the role of the thermal ground state in U(1) wave propagation, photonic particle–wave duality, and calculational intricacies and book-keeping related to one-loop scattering of massless modes in the deconfining phase of an SU(2) Yang–Mills theory. Moreover, a derivation of the temperature–redshift relation of the CMB in deconfining SU(2) Yang–Mills thermodynamics and its application t...
Quantum chromodynamics is generally accepted to be the quantum field theory which describes the strong interactions in elementary particle physics. However, the question of the mechanism responsible for the “confinement” of the color degrees of freedom of quarks and gluons into hadrons still ranks as one of the most interesting open problems in physics.This proceedings volume summarizes the state of the art in this area of research. Mathematically inclined readers will find the articles based on monopoles, vortices, and topology most interesting. Meanwhile, lattice calculations can be performed for many important physical quantities. Their results can be used as guidelines for developing models of quark confinement. These models are indispensable for theoretical physicists performing calculations with the Bethe-Salpeter equation, Dyson-Schwinger equations, effective Hamiltonians, and potential models. The cross-fertilization of all these subfields of research becomes evident from the articles in this book. A few experimental papers are also included.
"The science-fiction genre known as steampunk juxtaposes futuristic technologies with Victorian settings. This fantasy is becoming reality at the intersection of two scientific fields-twenty-first-century quantum physics and nineteenth-century thermodynamics, or the study of energy-in a discipline known as quantum steampunk"--
The problem of quark confinement is one of the classic unsolved problems of particle physics and is fundamental to our understanding of the physics of the strong interaction and the behaviour of non-Abelian gauge theories in general. The confinement problem is also are area in which concepts from topology and techniques of computational physics both find important applications. This volume contains a snapshot of current research in this field as of January 2002. Particular emphasis is placed on the role of topological field configurations such as centre vortices and monopoles in proposed confinement mechanisms. Other topics covered include colour superconductivity, instantons and chiral symmetry breaking, matrix models and the construction of chiral gauge theories. Readership: Research scientists and graduate students of high energy physics and nuclear physics.
This volume summarizes our contemporary understanding of the deconfinement transition in QCD at finite temperature and chemical potential. Questions as to whether a quark-gluon plasma exists in the interior of dense astrophysical objects or which bound-state signals have to be studied in order to unambiguously detect the QCD phase transition(s) in future heavy-ion collision programmes at RHIC and LHC are addressed. Progress in answering these questions requires a fusion of lattice QCD with other nonperturbative approaches and low-energy effective models for QCD. Experts in these fields present in the book their methods and their results in understanding the deconfinement phenomenon.
Proceedings of the Thirteenth International Workshop on Maximum Entropy and Bayesian Methods