You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In Fourier Analysis and Approximation of Functions basics of classical Fourier Analysis are given as well as those of approximation by polynomials, splines and entire functions of exponential type. In Chapter 1 which has an introductory nature, theorems on convergence, in that or another sense, of integral operators are given. In Chapter 2 basic properties of simple and multiple Fourier series are discussed, while in Chapter 3 those of Fourier integrals are studied. The first three chapters as well as partially Chapter 4 and classical Wiener, Bochner, Bernstein, Khintchin, and Beurling theorems in Chapter 6 might be interesting and available to all familiar with fundamentals of integration t...
Integration theory holds a prime position, whether in pure mathematics or in various fields of applied mathematics. It plays a central role in analysis; it is the basis of probability theory and provides an indispensable tool in mathe matical physics, in particular in quantum mechanics and statistical mechanics. Therefore, many textbooks devoted to integration theory are already avail able. The present book by Michel Simonnet differs from the previous texts in many respects, and, for that reason, it is to be particularly recommended. When dealing with integration theory, some authors choose, as a starting point, the notion of a measure on a family of subsets of a set; this approach is especially well suited to applications in probability theory. Other authors prefer to start with the notion of Radon measure (a continuous linear func tional on the space of continuous functions with compact support on a locally compact space) because it plays an important role in analysis and prepares for the study of distribution theory. Starting off with the notion of Daniell measure, Mr. Simonnet provides a unified treatment of these two approaches.
This book constitutes the refereed proceedings of the 19th International Conference on Analytical and Stochastic Modelling Techniques and Applications, ASMTA 2012, held in Grenoble, France, in June 2012. The 20 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on queueing systems; networking applications; Markov chains; stochastic modelling.
This book is an attempt to make presentation of Elements of Real Analysis more lucid. The book contains examples and exercises meant to help a proper understanding of the text. For B.A., B.Sc. and Honours (Mathematics and Physics), M.A. and M.Sc. (Mathematics) students of various Universities/ Institutions.As per UGC Model Curriculum and for I.A.S. and Various other competitive exams.
This text presents mathematical biology as a field with a unity of its own, rather than only the intrusion of one science into another. The book focuses on problems of contemporary interest, such as cancer, genetics, and the rapidly growing field of genomics.
Driven by the question, 'What is the computational content of a (formal) proof?', this book studies fundamental interactions between proof theory and computability. It provides a unique self-contained text for advanced students and researchers in mathematical logic and computer science. Part I covers basic proof theory, computability and Gödel's theorems. Part II studies and classifies provable recursion in classical systems, from fragments of Peano arithmetic up to Π11–CA0. Ordinal analysis and the (Schwichtenberg–Wainer) subrecursive hierarchies play a central role and are used in proving the 'modified finite Ramsey' and 'extended Kruskal' independence results for PA and Π11–CA0. Part III develops the theoretical underpinnings of the first author's proof assistant MINLOG. Three chapters cover higher-type computability via information systems, a constructive theory TCF of computable functionals, realizability, Dialectica interpretation, computationally significant quantifiers and connectives and polytime complexity in a two-sorted, higher-type arithmetic with linear logic.
Chaotic Signals in Digital Communications combines fundamental background knowledge with state-of-the-art methods for using chaotic signals and systems in digital communications. The book builds a bridge between theoretical works and practical implementation to help researchers attain consistent performance in realistic environments. It shows the possible shortcomings of the chaos-based communication systems proposed in the literature, particularly when they are subjected to non-ideal conditions. It also presents a toolbox of techniques for researchers working to actually implement such systems. A Combination of Tutorials and In-Depth, Cutting-Edge Research Featuring contributions by active ...
This book provides a gentle introduction to fractional Sobolev spaces which play a central role in the calculus of variations, partial differential equations, and harmonic analysis. The first part deals with fractional Sobolev spaces of one variable. It covers the definition, standard properties, extensions, embeddings, Hardy inequalities, and interpolation inequalities. The second part deals with fractional Sobolev spaces of several variables. The author studies completeness, density, homogeneous fractional Sobolev spaces, embeddings, necessary and sufficient conditions for extensions, Gagliardo-Nirenberg type interpolation inequalities, and trace theory. The third part explores some applic...