Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Shape Perception in Human and Computer Vision
  • Language: en
  • Pages: 505

Shape Perception in Human and Computer Vision

This comprehensive and authoritative text/reference presents a unique, multidisciplinary perspective on Shape Perception in Human and Computer Vision. Rather than focusing purely on the state of the art, the book provides viewpoints from world-class researchers reflecting broadly on the issues that have shaped the field. Drawing upon many years of experience, each contributor discusses the trends followed and the progress made, in addition to identifying the major challenges that still lie ahead. Topics and features: examines each topic from a range of viewpoints, rather than promoting a specific paradigm; discusses topics on contours, shape hierarchies, shape grammars, shape priors, and 3D shape inference; reviews issues relating to surfaces, invariants, parts, multiple views, learning, simplicity, shape constancy and shape illusions; addresses concepts from the historically separate disciplines of computer vision and human vision using the same “language” and methods.

Computer Vision, Graphics and Image Processing
  • Language: en
  • Pages: 980

Computer Vision, Graphics and Image Processing

  • Type: Book
  • -
  • Published: 2007-01-01
  • -
  • Publisher: Springer

This book constitutes the refereed proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing, ICVGIP 2006, held in Madurai, India, December 2006. Coverage in this volume includes image restoration and super-resolution, image filtering, visualization, tracking and surveillance, face-, gesture-, and object-recognition, compression, content based image retrieval, stereo/camera calibration, and biometrics.

Computer Vision
  • Language: en
  • Pages: 544

Computer Vision

The four-volume set LNCS 6492-6495 constitutes the thoroughly refereed post-proceedings of the 10th Asian Conference on Computer Vision, ACCV 2009, held in Queenstown, New Zealand in November 2010. All together the four volumes present 206 revised papers selected from a total of 739 Submissions. All current issues in computer vision are addressed ranging from algorithms that attempt to automatically understand the content of images, optical methods coupled with computational techniques that enhance and improve images, and capturing and analyzing the world's geometry while preparing the higher level image and shape understanding. Novel gemometry techniques, statistical learning methods, and modern algebraic procedures are dealt with as well.

Riemannian Computing in Computer Vision
  • Language: en
  • Pages: 382

Riemannian Computing in Computer Vision

  • Type: Book
  • -
  • Published: 2015-11-09
  • -
  • Publisher: Springer

This book presents a comprehensive treatise on Riemannian geometric computations and related statistical inferences in several computer vision problems. This edited volume includes chapter contributions from leading figures in the field of computer vision who are applying Riemannian geometric approaches in problems such as face recognition, activity recognition, object detection, biomedical image analysis, and structure-from-motion. Some of the mathematical entities that necessitate a geometric analysis include rotation matrices (e.g. in modeling camera motion), stick figures (e.g. for activity recognition), subspace comparisons (e.g. in face recognition), symmetric positive-definite matrices (e.g. in diffusion tensor imaging), and function-spaces (e.g. in studying shapes of closed contours).

Functional and Shape Data Analysis
  • Language: en
  • Pages: 454

Functional and Shape Data Analysis

  • Type: Book
  • -
  • Published: 2016-10-03
  • -
  • Publisher: Springer

This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geome...

Person Re-Identification with Limited Supervision
  • Language: en
  • Pages: 86

Person Re-Identification with Limited Supervision

Person re-identification is the problem of associating observations of targets in different non-overlapping cameras. Most of the existing learning-based methods have resulted in improved performance on standard re-identification benchmarks, but at the cost of time-consuming and tediously labeled data. Motivated by this, learning person re-identification models with limited to no supervision has drawn a great deal of attention in recent years. In this book, we provide an overview of some of the literature in person re-identification, and then move on to focus on some specific problems in the context of person re-identification with limited supervision in multi-camera environments. We expect t...

Computer Vision in the Infrared Spectrum
  • Language: en
  • Pages: 128

Computer Vision in the Infrared Spectrum

Human visual perception is limited to the visual-optical spectrum. Machine vision is not. Cameras sensitive to the different infrared spectra can enhance the abilities of autonomous systems and visually perceive the environment in a holistic way. Relevant scene content can be made visible especially in situations, where sensors of other modalities face issues like a visual-optical camera that needs a source of illumination. As a consequence, not only human mistakes can be avoided by increasing the level of automation, but also machine-induced errors can be reduced that, for example, could make a self-driving car crash into a pedestrian under difficult illumination conditions. Furthermore, mu...

Combinatorial Image Analysis
  • Language: en
  • Pages: 771

Combinatorial Image Analysis

  • Type: Book
  • -
  • Published: 2004-11-03
  • -
  • Publisher: Springer

This volume presents the proceedings of the 10th International Workshop on Combinatorial Image Analysis, held December 1–3, 2004, in Auckland, New Zealand. Prior meetings took place in Paris (France, 1991), Ube (Japan, 1992), Washington DC (USA, 1994), Lyon (France, 1995), Hiroshima (Japan, 1997), Madras (India, 1999), Caen (France, 2000), Philadelphia (USA, 2001), and - lermo (Italy, 2003). For this workshop we received 86 submitted papers from 23 countries. Each paper was evaluated by at least two independent referees. We selected 55 papers for the conference. Three invited lectures by Vladimir Kovalevsky (Berlin), Akira Nakamura (Hiroshima), and Maurice Nivat (Paris) completed the progr...

Multi-Modal Face Presentation Attack Detection
  • Language: en
  • Pages: 76

Multi-Modal Face Presentation Attack Detection

For the last ten years, face biometric research has been intensively studied by the computer vision community. Face recognition systems have been used in mobile, banking, and surveillance systems. For face recognition systems, face spoofing attack detection is a crucial stage that could cause severe security issues in government sectors. Although effective methods for face presentation attack detection have been proposed so far, the problem is still unsolved due to the difficulty in the design of features and methods that can work for new spoofing attacks. In addition, existing datasets for studying the problem are relatively small which hinders the progress in this relevant domain. In order...

Probabilistic and Biologically Inspired Feature Representations
  • Language: en
  • Pages: 89

Probabilistic and Biologically Inspired Feature Representations

Under the title "Probabilistic and Biologically Inspired Feature Representations," this text collects a substantial amount of work on the topic of channel representations. Channel representations are a biologically motivated, wavelet-like approach to visual feature descriptors: they are local and compact, they form a computational framework, and the represented information can be reconstructed. The first property is shared with many histogram- and signature-based descriptors, the latter property with the related concept of population codes. In their unique combination of properties, channel representations become a visual Swiss army knife—they can be used for image enhancement, visual obje...