You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
First there was Edwin A. Abbott's remarkable Flatland, published in 1884, and one of the all-time classics of popular mathematics. Now, from mathematician and accomplished science writer Ian Stewart, comes what Nature calls "a superb sequel." Through larger-than-life characters and an inspired story line, Flatterland explores our present understanding of the shape and origins of the universe, the nature of space, time, and matter, as well as modern geometries and their applications. The journey begins when our heroine, Victoria Line, comes upon her great-great-grandfather A. Square's diary, hidden in the attic. The writings help her to contact the Space Hopper, who tempts her away from her home and family in Flatland and becomes her guide and mentor through ten dimensions. In the tradition of Alice in Wonderland and The Phantom Toll Booth, this magnificent investigation into the nature of reality is destined to become a modern classic.
'Stewart is Britain's most brilliant and prolific populariser of maths' Alex Bellos 'The instructive equivalent of a Michelin-starred tasting menu' Tim Radford Many people think mathematics is useless. They're wrong. In the UK, the 2.8 million people employed in mathematical science occupations contributed £208 billion to the economy in a single year - that's 10 per cent of the workforce contributing 16 per cent of the economy. What's the Use? asks why there is such a vast gulf between public perceptions of mathematics and reality. It shows how mathematics is vital, often in surprising ways, behind the scenes of daily life. How politicians pick their voters. How an absurd little puzzle solved 300 years ago leads to efficient methods for kidney transplants. And how a bizarre, infinitely wiggly curve helps to optimise deliveries to your door.
There are some mathematical problems whose significance goes beyond the ordinary - like Fermat's Last Theorem or Goldbach's Conjecture - they are the enigmas which define mathematics. The Great Mathematical Problems explains why these problems exist, why they matter, what drives mathematicians to incredible lengths to solve them and where they stand in the context of mathematics and science as a whole. It contains solved problems - like the Poincaré Conjecture, cracked by the eccentric genius Grigori Perelman, who refused academic honours and a million-dollar prize for his work, and ones which, like the Riemann Hypothesis, remain baffling after centuries. Stewart is the guide to this mysterious and exciting world, showing how modern mathematicians constantly rise to the challenges set by their predecessors, as the great mathematical problems of the past succumb to the new techniques and ideas of the present.
School maths is not the interesting part. The real fun is elsewhere. Like a magpie, Ian Stewart has collected the most enlightening, entertaining and vexing 'curiosities' of maths over the years... Now, the private collection is displayed in his cabinet. There are some hidden gems of logic, geometry and probability -- like how to extract a cherry from a cocktail glass (harder than you think), a pop up dodecahedron, the real reason why you can't divide anything by zero and some tips for making money by proving the obvious. Scattered among these are keys to unlocking the mysteries of Fermat's last theorem, the Poincaré Conjecture, chaos theory, and the P/NP problem for which a million dollar prize is on offer. There are beguiling secrets about familiar names like Pythagoras or prime numbers, as well as anecdotes about great mathematicians. Pull out the drawers of the Professor's cabinet and who knows what could happen...
Symmetry is an immensely important concept in mathematics and throughout the sciences. In this Very Short Introduction, Ian Stewart highlights the deep implications of symmetry and its important scientific applications across the entire subject.
A new partnership of biologists and mathematicians is picking apart the hidden complexity of animals and plants to throw fresh light on the behaviour of entire organisms, how they interact and how changes in biological diversity affect the planet's ecological balance. Mathematics offers new and sometimes startling perspectives on evolution and how patterns of inheritance and population work out over time-scales ranging from millions to hundreds of years - as well as what's going on to change us right now. Ian Stewart, in characteristically clear and entertaining fashion, explores these and a whole range of pertinent issues, including how far genes control behaviour and the nature of life itself. He shows how far mathematicians and biologists are succeeding in tackling some of the most difficult scientific problems the human race has ever confronted and where their research is currently taking us.
From Newton's Law of Gravity to the Black-Scholes model used by bankers to predict the markets, equations, are everywhere -- and they are fundamental to everyday life.Seventeen Equations that Changed the World examines seventeen ground-breaking equations that have altered the course of human history. He explores how Pythagoras's Theorem led to GPS and Satnav; how logarithms are applied in architecture; why imaginary numbers were important in the development of the digital camera, and what is really going on with Schrödinger's cat. Entertaining, surprising and vastly informative, Seventeen Equations that Changed the World is a highly original exploration -- and explanation -- of life on earth.
In the year 2270, with travel to the nearby planets well established, a bizarre discovery is made on Callisto, the eighth moon of Jupiter. Dozens upon dozens of strange wheeled artifacts-wheelers-are found buried beneath the icy surface. No one knows what they were used for and who left them in our solar system. At the same time, it is discovered that the moons of Jupiter have moved from their age-old positions. A quickly formed expedition finds that Jupiter is inhabited by a race of balloon-like aliens, who defend their world against comet strikes by moving their moons using gravitational technology. This time, though, their redirection is aiming an incoming comet directly at Earth! Communication at first proves impossible, but an Earth child who has an intuitive understanding of animal behavior becomes the key to contacting them-and joining forces with them to save the world.
Uncertainty is everywhere. It lurks in every consideration of the future - the weather, the economy, the sex of an unborn child - even quantities we think that we know such as populations or the transit of the planets contain the possibility of error. It's no wonder that, throughout that history, we have attempted to produce rigidly defined areas of uncertainty - we prefer the surprise party to the surprise asteroid. We began our quest to make certain an uncertain world by reading omens in livers, tea leaves, and the stars. However, over the centuries, driven by curiosity, competition, and a desire be better gamblers, pioneering mathematicians and scientists began to reduce wild uncertaintie...
A retitled and revised edition of Ian Stewart's The Problem of Mathematics, this is the perfect guide to today's mathematics. Read about the latest discoveries, including Andrew Wile's amazing proof of Fermat's Last Theorem, the newest advances in knot theory, the Four Colour Theorem, Chaos Theory, and fake four-dimensial spaces. See how simple concepts from probability theory shed light on the National Lottery and tell you how to maximize your winnings. Discover howinfinitesimals become respectable, why there are different kinds of infinity, and how to square the circle with the mathematical equivalent of a pair of scissors.