You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
&Quot;This book is devoted to the physical properties of non-ideal plasma which are compressed so strongly that the effects of interparticle interactions govern its behavior. In this volume, the methods of non-ideal plasma generation and diagnostics are considered. The experimental results are given and the main theoretical models of the non-ideal plasma state are discussed. The problems of thermodynamics, electro-physics, optics and dynamic stability are covered."--BOOK JACKET.
ATOMIC AND MOLECULAR PHYSICS: Introduction to Advanced Topics introduces advanced topics of Atomic and Molecular Collision Physics covering Atomic structure calculations, Photoionization of atomic systems, Electron-atom collisions, Ion-atom collisions, Collisions involving exotic particles, Ultracold atoms and Bose-Einstein condensation as well as Atomic data and Plasma diagnostics. This volume is very useful to start research in theoretical and experimental Atomic and Molecular Physics. The book is also helpful to those working in interrelated research areas like Laser physics, Astrophysics and Plasma and Fusion research where such a background of theoretical Atomic Collision Physics is an integral part.
The book is devoted to the physical properties of nonideal plasma, in which the effects of interparticle interactions are substantial. Such a plasma is usually compressed so strongly that it is called dense plasma. Interest in plasma studies has increased over the last 10 or 15 years, owing to the development of modern technology and sophisticated facilities whose oper ation is based on a high energy density. As a result of a recent sharp increase in the number of experimental and theoretical investigations, much interesting and reliable data on the properties of dense plasma have been obtained. The data are distributed in a rapidly growing number of original publications and reviews. This v...
Theoretical, computational, and experimental electromagnetic modeling and characterization This engineering and scientific handbook offers extensive coverage of electromagnetic modeling and characterization of composite materials from the theoretical, computational, and experimental points of view. You will get unique data for non-conducting dielectrics, semiconducting, conducting, and magnetic materials, and composites composed of two or more molecularly distinct compounds. The goal of the book is to contribute to current and visionary electromagnetic composite applications and extend the existing database for composites. Electromagnetic Composites Handbook: Models, Measurement, and Characterization is presented in a clear, hierarchical style, progressing from basic concepts through simple and more complex models, and finally to data verifying the models. Provides a large collection of tabulated data for more than 300 complex composite materials Information presented will aid in the development of multifunctional material designs The data is a direct extension from Arthur Von Hippel's landmark Dielectric Materials and Application
This book is on inertial confinement fusion, an alternative way to produce electrical power from hydrogen fuel by using powerful lasers or particle beams. It involves the compression of tiny amounts (micrograms) of fuel to thousand times solid density and pressures otherwise existing only in the centre of stars. Thanks to advances in laser technology, it is now possible to produce such extreme states of matter in the laboratory. Recent developments have boosted laser intensities again with new possibilities for laser particle accelerators, laser nuclear physics, and fast ignition of fusion targets. This is a reference book for those working on beam plasma physics, be it in the context of fun...
The tokamak is the principal tool in controlled fusion research. This book acts as an introduction to the subject and a basic reference for theory, definitions, equations, and experimental results. The fourth edition has been completely revised, describing their development of tokamaks to the point of producing significant fusion power.
The aim of this book is to provide the reader with a coherent and updated comprehensive treatise that covers the central subjects of the field. The style and content is suitable both for students and researchers. Highlights of the book include (among many others) the Ion-Sphere model, statistical models, Average-Atom model, emission spectrum, unresolved transition arrays, supertransition arrays, radiation transport, escape factors and x-ray lasers.
A world list of books in the English language.