You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.
This detailed exposition makes classical algebraic geometry accessible to the modern mathematician.
The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.
This volume contains the proceedings of the Korea-Japan Conference on Algebraic Geometry in honor of Igor Dolgachev on his sixtieth birthday. The articles in this volume explore a wide variety of problems that illustrate interactions between algebraic geometry and other branches of mathematics. Among the topics covered by this volume are algebraic curve theory, algebraic surface theory, moduli space, automorphic forms, Mordell-Weil lattices, and automorphisms of hyperkahler manifolds. This book is an excellent and rich reference source for researchers.
The articles in this volume cover some developments in complex analysis and algebraic geometry. The book is divided into three parts. Part I includes topics in the theory of algebraic surfaces and analytic surface. Part II covers topics in moduli and classification problems, as well as structure theory of certain complex manifolds. Part III is devoted to various topics in algebraic geometry analysis and arithmetic. A survey article by Ueno serves as an introduction to the general background of the subject matter of the volume. The volume was written for Kunihiko Kodaira on the occasion of his sixtieth birthday, by his friends and students. Professor Kodaira was one of the world's leading mathematicians in algebraic geometry and complex manifold theory: and the contributions reflect those concerns.
A thorough yet accessible introduction to the mathematical breakthroughs achieved by using new polynomial methods in the past decade.
This is the first of two volumes representing the current state of knowledge about Enriques surfaces which occupy one of the classes in the classification of algebraic surfaces. Recent improvements in our understanding of algebraic surfaces over fields of positive characteristic allowed us to approach the subject from a completely geometric point of view although heavily relying on algebraic methods. Some of the techniques presented in this book can be applied to the study of algebraic surfaces of other types. We hope that it will make this book of particular interest to a wider range of research mathematicians and graduate students. Acknowledgements. The undertaking of this project was made possible by the support of several institutions. Our mutual cooperation began at the University of Warwick and the Max Planck Institute of Mathematics in 1982/83. Most of the work in this volume was done during the visit of the first author at the University of Michigan in 1984-1986. The second author was supported during all these years by grants from the National Science Foundation.
The goal of this book is to present a portrait of the n n-dimensional Cremona group with an emphasis on the 2-dimensional case. After recalling some crucial tools, the book describes a naturally defined infinite dimensional hyperbolic space on which the Cremona group acts. This space plays a fundamental role in the study of Cremona groups, as it allows one to apply tools from geometric group theory to explore properties of the subgroups of the Cremona group as well as the degree growth and dynamical behavior of birational transformations. The book describes natural topologies on the Cremona group, codifies the notion of algebraic subgroups of the Cremona groups and finishes with a chapter on the dynamics of their actions. This book is aimed at graduate students and researchers in algebraic geometry who are interested in birational geometry and its interactions with geometric group theory and dynamical systems.
EMAlgebra, Arithmetic, and Geometry: In Honor of Yu. I. ManinEM consists of invited expository and research articles on new developments arising from Manin’s outstanding contributions to mathematics.
Author Serge Lang defines algebraic geometry as the study of systems of algebraic equations in several variables and of the structure that one can give to the solutions of such equations. The study can be carried out in four ways: analytical, topological, algebraico-geometric, and arithmetic. This volume offers a rapid, concise, and self-contained introductory approach to the algebraic aspects of the third method, the algebraico-geometric. The treatment assumes only familiarity with elementary algebra up to the level of Galois theory. Starting with an opening chapter on the general theory of places, the author advances to examinations of algebraic varieties, the absolute theory of varieties, and products, projections, and correspondences. Subsequent chapters explore normal varieties, divisors and linear systems, differential forms, the theory of simple points, and algebraic groups, concluding with a focus on the Riemann-Roch theorem. All the theorems of a general nature related to the foundations of the theory of algebraic groups are featured.