You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Natural environments provide enormously valuable, but largely unappreciated, services that aid humans and other earthlings. It is becoming clear that these life-support systems are faltering and failing worldwide due to human actions that disrupt nature's ability to do its beneficial work. Ecosystem Services: Charting a Path to Sustainability documents the National Academies' Keck Futures Initiative Conference on Ecosystem Services. At this conference, participants were divided into 14 interdisciplinary research teams to explore diverse challenges at the interface of science, engineering, and medicine. The teams needed to address the challenge of communicating and working together from a div...
Synthetic biology is an innovative and growing field that unites engineering and biology. It builds on the powerful research that came about as a result of a recombinant DNA technology and genome sequencing. By definition, synthetic biology is an interdisciplinary enterprise comprising biologists of many specialties, engineers, physicists, computer scientists and others. It promises a fundamentally deeper understanding of how living systems work and the capacity to recreate them for medicine, public health and the environment, including renewable energy. NAKFI Synthetic Biology: Building a Nation's Inspiration discusses new foundational technologies and tools required to make biology easier to engineer, considers ethical issues unique to synthetic biology, explores how synthetic biology can lead to an understanding of the principles underlying natural genetic circuits and debates how synthetic biology can be used to answer fundamental biological questions.
Digital media provide humans with more access to information than ever before-a computer, tablet, or smartphone can all be used to access data online and users frequently have more than one device. However, as humans continue to venture into the digital frontier, it remains to be known whether access to seemingly unlimited information is actually helping us learn and solve complex problems, or ultimately creating more difficulty and confusion for individuals and societies by offering content overload that is not always meaningful. Throughout history, technology has changed the way humans interact with the world. Improvements in tools, language, industrial machines, and now digital informatio...
The National Academies Keck Futures Initiative (NAKFI) Conference in 2013 focused on the Future of Advanced Nuclear Technologies to generate new ideas about how to move nuclear technology forward while making the world safer and more secure. Beyond the public's apprehension concerning the safety of nuclear power, which calls out for better communications strategies, several challenges lie ahead for the nuclear enterprise in the United States. The workforce in nuclear technology is aging, there is an overreliance on large, high-risk reactor designs, and the supply of radioisotopes for nuclear medicine remains unstable-all problems crying out for solutions. The Future of Advanced Nuclear Technologies summarizes the 14 Interdisciplinary Research (IDR) teams' collaborations on creative solutions to challenges designed to propel the policy, engineering, and social aspects of the nuclear enterprise forward.
Imaging science has the power to illuminate regions as remote as distant galaxies, and as close to home as our own bodies. Many of the disciplines that can benefit from imaging share common technical problems, yet researchers often develop ad hoc methods for solving individual tasks without building broader frameworks that could address many scientific problems. At the 2010 National Academies Keck Futures Initiative Conference on Imaging Science, researchers from academia, industry, and government formed 14 interdisciplinary teams created to find a common language and structure for developing new technologies, processing and recovering images, mining imaging data, and visualizing it effectiv...
Synthetic biology is an innovative and growing field that unites engineering and biology. It builds on the powerful research that came about as a result of a recombinant DNA technology and genome sequencing. By definition, synthetic biology is an interdisciplinary enterprise comprising biologists of many specialties, engineers, physicists, computer scientists and others. It promises a fundamentally deeper understanding of how living systems work and the capacity to recreate them for medicine, public health and the environment, including renewable energy. NAKFI Synthetic Biology: Building a Nation's Inspiration discusses new foundational technologies and tools required to make biology easier to engineer, considers ethical issues unique to synthetic biology, explores how synthetic biology can lead to an understanding of the principles underlying natural genetic circuits and debates how synthetic biology can be used to answer fundamental biological questions.
It is vitally important for businesses to have a holistic understanding of the many issues surrounding and shaping sustainability, from competitors to government and political factors, to economics and ecological science. This integrated textbook for MBA and senior-level undergraduates offers a comprehensive overview of the issues of sustainability as they relate to business and influence corporate strategy. It also features a wide range of cases and an extensive discussion of tools to incorporate sustainability issues into strategic decision making, helping instructors and students to build and then apply a solid understanding of sustainability in business.
The 2006 conference, "Smart Prosthetics: Exploring Assistive Devices for the Body and Mind," attracted scientists, engineers and medical researchers to participate in a series of task groups to develop research plans to address various challenges within the prosthetics field. Eleven conference task groups gave the participants eight hours to develop new research approaches to various challenges, including: build a smart prosthesis that will grow with a child; develop a smart prosthetic that can learn better and/or faster; refine technologies to create active orthotic devices; and describe a framework for replacing damaged cortical tissue and fostering circuit integration to restore neurologi...
Collective Behavior is the summary of the 2014 National Academies Keck Futures Initiative Conference on Collective Behavior. Participants were divided into fourteen interdisciplinary research teams. The teams spent nine hours over two days exploring diverse challenges at the interface of science, engineering, and medicine. The composition of the teams was intentionally diverse, to encourage the generation of new approaches by combining a range of different types of contributions. The teams included researchers from science, engineering, and medicine, as well as representatives from private and public funding agencies, universities, businesses, journals, and the science media. Researchers rep...
Last November, the National Academies Keck Futures Initiative held the Designing Nanostructures at the Interface Between Biomedical and Physical Systems conference at which researchers from science, engineering and medicine discussed recent developments in nanotechnology, directions for future research, and possible biomedical applications. The centerpiece of the conference was breakout sessions in which ten focus groups of researchers from different fields spent eight hours developing research plans to solve various problems in the field of nanotechnology. Among the challenges were: Building a nanosystem that can isolate, sequence and identify RNA or DNA Developing a system to detect diseas...