You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The author develops a homology theory for Smale spaces, which include the basics sets for an Axiom A diffeomorphism. It is based on two ingredients. The first is an improved version of Bowen's result that every such system is the image of a shift of finite type under a finite-to-one factor map. The second is Krieger's dimension group invariant for shifts of finite type. He proves a Lefschetz formula which relates the number of periodic points of the system for a given period to trace data from the action of the dynamics on the homology groups. The existence of such a theory was proposed by Bowen in the 1970s.
The classical Grothendieck inequality is viewed as a statement about representations of functions of two variables over discrete domains by integrals of two-fold products of functions of one variable. An analogous statement is proved, concerning continuous functions of two variables over general topological domains. The main result is the construction of a continuous map $\Phi$ from $l^2(A)$ into $L^2(\Omega_A, \mathbb{P}_A)$, where $A$ is a set, $\Omega_A = \{-1,1\}^A$, and $\mathbb{P}_A$ is the uniform probability measure on $\Omega_A$.
The structure space of a closed topological -manifold classifies bundles whose fibers are closed -manifolds equipped with a homotopy equivalence to . The authors construct a highly connected map from to a concoction of algebraic -theory and algebraic -theory spaces associated with . The construction refines the well-known surgery theoretic analysis of the block structure space of in terms of -theory.
The Hamiltonian ∫X(∣∂tu∣2+∣∇u∣2+m2∣u∣2)dx, defined on functions on R×X, where X is a compact manifold, has critical points which are solutions of the linear Klein-Gordon equation. The author considers perturbations of this Hamiltonian, given by polynomial expressions depending on first order derivatives of u. The associated PDE is then a quasi-linear Klein-Gordon equation. The author shows that, when X is the sphere, and when the mass parameter m is outside an exceptional subset of zero measure, smooth Cauchy data of small size ϵ give rise to almost global solutions, i.e. solutions defined on a time interval of length cNϵ−N for any N. Previous results were limited either to the semi-linear case (when the perturbation of the Hamiltonian depends only on u) or to the one dimensional problem. The proof is based on a quasi-linear version of the Birkhoff normal forms method, relying on convenient generalizations of para-differential calculus.
In this paper the authors extend the notion of a continuous bundle random dynamical system to the setting where the action of R or N is replaced by the action of an infinite countable discrete amenable group. Given such a system, and a monotone sub-additive invariant family of random continuous functions, they introduce the concept of local fiber topological pressure and establish an associated variational principle, relating it to measure-theoretic entropy. They also discuss some variants of this variational principle. The authors introduce both topological and measure-theoretic entropy tuples for continuous bundle random dynamical systems, and apply variational principles to obtain a relationship between these of entropy tuples. Finally, they give applications of these results to general topological dynamical systems, recovering and extending many recent results in local entropy theory.
The authors study the complex geometry and coherent cohomology of nonclassical Mumford-Tate domains and their quotients by discrete groups. Their focus throughout is on the domains which occur as open -orbits in the flag varieties for and , regarded as classifying spaces for Hodge structures of weight three. In the context provided by these basic examples, the authors formulate and illustrate the general method by which correspondence spaces give rise to Penrose transforms between the cohomologies of distinct such orbits with coefficients in homogeneous line bundles.
Polynomial approximation on convex polytopes in is considered in uniform and -norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the -case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate -functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.