You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book explains the Lorentz mathematical group in a language familiar to physicists. While the three-dimensional rotation group is one of the standard mathematical tools in physics, the Lorentz group of the four-dimensional Minkowski space is still very strange to most present-day physicists. It plays an essential role in understanding particles moving at close to light speed and is becoming the essential language for quantum optics, classical optics, and information science. The book is based on papers and books published by the authors on the representations of the Lorentz group based on harmonic oscillators and their applications to high-energy physics and to Wigner functions applicable to quantum optics. It also covers the two-by-two representations of the Lorentz group applicable to ray optics, including cavity, multilayer and lens optics, as well as representations of the Lorentz group applicable to Stokes parameters and the Poincaré sphere on polarization optics.
A standard view of elementary particles and forces is that they determine everything else in the rest of physics, the whole of chemistry, biology, geology, physiology and perhaps even human behavior. This reductive view of physics is popular among some physicists. Yet, there are other physicists who argue this is an oversimplified and that the relationship of elementary particle physics to these other domains is one of emergence. Several objections have been raised from physics against proposals for emergence (e.g., that genuinely emergent phenomena would violate the standard model of elementary particle physics, or that genuine emergence would disrupt the lawlike order physics has revealed)...
For a physicist, "noise" is not just about sounds, but refers to any random physical process that blurs measurements, and in so doing stands in the way of scientific knowledge. This book deals with the most common types of noise, their properties, and some of their unexpected virtues. The text explains the most useful mathematical concepts related to noise. Finally, the book aims at making this subject more widely known and to stimulate the interest for its study in young physicists.
Our understanding of subatomic particles developed over many years, although a clear picture of the different particles, their interactions and their inter-relationships only emerged in the latter part of the twentieth century. The first "subatomic particles" to be investigated were those which exhibit readily observable macroscopic behavior, specifically these are the photon, which we observe as light and the electron, which is manifested as electricity. The true nature of these particles, however, only became clear within the last century or so. The development of the Standard Model provided clarification of the way in which various particles, specifically the hadrons, relate to one anothe...
This book provides an introduction to the emerging field of quantum thermodynamics, with particular focus on its relation to quantum information and its implications for quantum computers and next generation quantum technologies. The text, aimed at graduate level physics students with a working knowledge of quantum mechanics and statistical physics, provides a brief overview of the development of classical thermodynamics and its quantum formulation in Chapter 1. Chapter 2 then explores typical thermodynamic settings, such as cycles and work extraction protocols, when the working material is genuinely quantum. Finally, Chapter 3 explores the thermodynamics of quantum information processing and introduces the reader to some more state of-the-art topics in this exciting and rapidly developing research field.
Assuming a background in basic classical physics, multivariable calculus, and differential equations, A Concise Introduction to Quantum Mechanics provides a self-contained presentation of the mathematics and physics of quantum mechanics. The relevant aspects of classical mechanics and electrodynamics are reviewed, and the basic concepts of wave-particle duality are developed as a logical outgrowth of experiments involving blackbody radiation, the photoelectric effect, and electron diffraction. The Copenhagen interpretation of the wave function and its relation to the particle probability density is presented in conjunction with Fourier analysis and its generalization to function spaces. Thes...
As technology advances education has expanded from the classroom into other formats including on-line delivery, flipped classrooms and hybrid delivery. Congruent with these is the need for alternative formats for laboratory experiences. This explosion in technology has also placed in the hands of a majority of students a sensor suite tucked neatly into their smart phones or smart tablets. The popularity of these devices provides a new avenue for the non-traditional kinematic lab experience. This book addresses this issue by providing 13 labs spanning the common topics in the first semester of university level physics. Each lab is designed to use only the student's smart phone, laptop and items easily found in big-box stores or a hobby shop. Each lab contains theory, set-up instructions and basic analysis techniques. All of these labs can be performed outside of the traditional university lab setting and initial costs averaging less than $8 per student per lab excluding thesmart phone and laptop.
Electromagnetism: Problems and solutions is an ideal companion book for the undergraduate student—sophomore, junior, or senior—who may want to work on more problems and receive immediate feedback while studying. Each chapter contains brief theoretical notes followed by the problem text with the solution and ends with a brief bibliography. Also presented are problems more general in nature, which may be a bit more challenging.
Physicists are very smart people. Still, when it comes to moving their ideas from university to market, they often lack the basic set of know-hows that could help them succeed in the technology transfer process. To fill this gap, Entrepreneurship for Physicists: A Practical Guide to Move Ideas from University to Market offers a concise analysis of the key ingredients that enable entrepreneurs to bring added value to their customers. After a short discussion on why university physicists should pay more attention to this aspect of their professional life, the book dives into a set of theories, models, and tools that could help an academic scientist transform an idea into customer added value. The reader will be introduced to effectuation theory, internal resource analysis, external landscape analysis, value capture, lean startup method, business canvases, financial projections, and to a series of topics that, albeit often neglected, do play a fundamental role in technology transfer, such as trust, communication, and persuasion. In the last chapter, the book explains howmost of the concepts discussed actually find application in the career of scientists in a much broader sense.
How to Understand Quantum Mechanics presents an accessible introduction to understanding quantum mechanics in a natural and intuitive way, which was advocated by Erwin Schroedinger and Albert Einstein. A theoretical physicist reveals dozens of easy tricks that avoid long calculations, makes complicated things simple, and bypasses the worthless anguish of famous scientists who died in angst. The author's approach is light-hearted, and the book is written to be read without equations, however all relevant equations still appear with explanations as to what they mean. The book entertainingly rejects quantum disinformation, the MKS unit system (obsolete), pompous non-explanations, pompous people...