You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Metamaterials, artificial electromagnetic media achieved by structuring on the subwave-length-scale were initially suggested for the negative index and superlensing. They became a paradigm for engineering electromagnetic space and controlling propagation of waves. The research agenda is now shifting on achieving tuneable, switchable, nonlinear and sensing functionalities. The time has come to talk about the emerging research field of metadevices employing active and tunable metamaterials with unique functionalities achieved by structuring of functional matter on the subwave-length scale. This book presents the first systematic and comprehensive summary of the reviews written by the pioneers and top-class experts in the field of metamaterials. It addresses many grand challenges of the cutting edge research for creating smaller and more efficient photonic structures and devices.
"Mathematical Theory of Dispersion-Managed Optical Solitons" discusses recent advances covering optical solitons, soliton perturbation, optical cross-talk, Gabitov-Turitsyn Equations, quasi-linear pulses, and higher order Gabitov-Turitsyn Equations. Focusing on a mathematical perspective, the book bridges the gap between concepts in engineering and mathematics, and gives an outlook to many new topics for further research. The book is intended for researchers and graduate students in applied mathematics, physics and engineering and also it will be of interest to those who are conducting research in nonlinear fiber optics. Dr. Anjan Biswas is an Associate Professor at the Department of Applied Mathematics & Theoretical Physics, Delaware State University, Dover, DE, USA; Dr. Daniela Milovic is an Associate Professor at the Department of Telecommunications, Faculty of Electronic Engineering, University of Nis, Serbia; Dr. Matthew Edwards is the Dean of the School of Arts and Sciences at Alabama A & M University in Huntsville, AL, USA.
The dissipative soliton concept is a fundamental extension of the concept of solitons in conservative and integrable systems. It includes ideas from three major sources, namely standard soliton theory developed since the 1960s; nonlinear dynamics theory; and Prigogine's ideas of systems far from equilibrium. These three sources also correspond to the three component parts of this novel paradigm. This book explains the above principles in detail and gives the reader various examples.
Computational Studies of New Materials was published by World Scientific in 1999 and edited by Daniel Jelski and Thomas F George. Much has happened during the past decade. Advances have been made on the same materials discussed in the 1999 book, including fullerenes, polymers and nonlinear optical processes in materials, which are presented in this 2010 book. In addition, different materials and topics are comprehensively covered, including nanomedicine, hydrogen storage materials, ultrafast laser processes, magnetization and light-emitting diodes.
This book presents a collection of extended contributions on the physics and application of optoelectronic materials and metamaterials. The book is divided into three parts, respectively covering materials, metamaterials and optoelectronic devices. Individual chapters cover topics including phonon-polariton interaction, semiconductor and nonlinear organic materials, metallic, dielectric and gyrotropic metamaterials, singular optics, parity-time symmetry, nonlinear plasmonics, microstructured optical fibers, passive nonlinear shaping of ultrashort pulses, and pulse-preserving supercontinuum generation. The book contains both experimental and theoretical studies, and each contribution is a self-contained exposition of a particular topic, featuring an extensive reference list. The book will be a useful resource for graduate and postgraduate students, researchers and engineers involved in optoelectronics/photonics, quantum electronics, optics, and adjacent areas of science and technology.
This volume contains the Proceedings of the NATO Advanced Research Workshop (ARW) and Emil-Warburg-Symposium (EWS) "Nonlinear Coherent Structures in Phy sics and Biology" held at the University of Bayreuth from June 1 -4, 1993. Director of the ARW was K. H. Spatschek, while F.G. Mertens acted as the co-director, host, and organizer of the EWS. The other members of the scientific organizing committee were A.R. Bishop (Los Alamos), J.C. Eilbeck (Edinburgh), and M. Remoissenet (Dijon). This was the eighth meeting in a series of interdisciplinary workshops founded by our French colleagues who had organized all the previous workshops, e.g. 1989 in Montpel lier and 1991 in Dijon. We were asked to organize the meeting this time in Germany. Of course, we wanted to keep the character defined by the previous meetings, which were always characterized by an open and friendly atmosphere, being not too large in quantity, but high in quality. This time altogether 103 participants attended the workshop. During the past years most of the participants met several times and discussed problems connected with the generation of nonlinear coherent structures in physics and biology.
Discusses the basic physical principles underlying the science and technology of nanophotonics, its materials and structures This volume presents nanophotonic structures and Materials. Nanophotonics is photonic science and technology that utilizes light/matter interactions on the nanoscale where researchers are discovering new phenomena and developing techniques that go well beyond what is possible with conventional photonics and electronics.The topics discussed in this volume are: Cavity Photonics; Cold Atoms and Bose-Einstein Condensates; Displays; E-paper; Graphene; Integrated Photonics; Liquid Crystals; Metamaterials; Micro-and Nanostructure Fabrication; Nanomaterials; Nanotubes; Plasmon...
Lax and Nirenberg are two of the most distinguished mathematicians of our times. Their work on partial differential equations (PDEs) over the last half-century has dramatically advanced the subject and has profoundly influenced the course of mathematics. A huge part of the development in PDEs during this period has either been through their work, motivated by it or achieved by their postdocs and students. A large number of mathematicians honored these two exceptional scientists in a week-long conference in Venice (June 1996) on the occasion of their 70th birthdays. This volume contains the proceedings of the conference, which focused on the modern theory of nonlinear PDEs and their applicati...
This book opens a new avenue to an engendering field of applied physics, located at the “crossing” of modern photonics, electromagnetics, acoustics and material science. It also highlights the concept of “non-locality”, which proves to be not a special feature of quantum phenomena, but is shown to have an important counterpart in classical physics and its engineering applications too. Furthermore, it visualizes the physical results by means of simple analytical presentations, reduced sometimes to the elementary functions.